scholarly journals Development and validation of next generation sequencing based 35-gene hereditary cancer panel

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Wing Chan ◽  
Mianne Lee ◽  
Zhen Xuan Yeo ◽  
Dingge Ying ◽  
Keith A. Grimaldi ◽  
...  
2015 ◽  
Vol 52 (Suppl 2) ◽  
pp. A3.1-A3
Author(s):  
Christopher A Tan ◽  
Marina Rabideau ◽  
Stephanie Cohen ◽  
Shan Yang ◽  
Karen Vikstrom ◽  
...  

Neoplasia ◽  
2015 ◽  
Vol 17 (4) ◽  
pp. 385-399 ◽  
Author(s):  
Daniel H. Hovelson ◽  
Andrew S. McDaniel ◽  
Andi K. Cani ◽  
Bryan Johnson ◽  
Kate Rhodes ◽  
...  

2017 ◽  
Vol 142 (3) ◽  
pp. 353-357 ◽  
Author(s):  
Mitra Mehrad ◽  
Somak Roy ◽  
Humberto Trejo Bittar ◽  
Sanja Dacic

Context.— Different testing algorithms and platforms for EGFR mutations and ALK rearrangements in advanced-stage lung adenocarcinoma exist. The multistep approach with single-gene assays has been challenged by more efficient next-generation sequencing (NGS) of a large number of gene alterations. The main criticism of the NGS approach is the detection of genomic alterations of uncertain significance. Objective.— To determine the best testing algorithm for patients with lung cancer in our clinical practice. Design.— Two testing approaches for metastatic lung adenocarcinoma were offered between 2012–2015. One approach was reflex testing for an 8-gene panel composed of DNA Sanger sequencing for EGFR, KRAS, PIK3CA, and BRAF and fluorescence in situ hybridization for ALK, ROS1, MET, and RET. At the oncologist's request, a subset of tumors tested by the 8-gene panel was subjected to a 50-gene Ion AmpliSeq Cancer Panel. Results.— Of 1200 non–small cell lung carcinomas (NSCLCs), 57 including 46 adenocarcinomas and NSCLCs, not otherwise specified; 7 squamous cell carcinomas (SCCs); and 4 large cell neuroendocrine carcinomas (LCNECs) were subjected to Ion AmpliSeq Cancer Panel. Ion AmpliSeq Cancer Panel detected 9 potentially actionable variants in 29 adenocarcinomas that were wild type by the 8-gene panel testing (9 of 29, 31.0%) in the following genes: ERBB2 (3 of 29, 10.3%), STK11 (2 of 29, 6.8%), PTEN (2 of 29, 6.8%), FBXW7 (1 of 29, 3.4%), and BRAF G469A (1 of 29, 3.4%). Four SCCs and 2 LCNECs showed investigational genomic alterations. Conclusions.— The NGS approach would result in the identification of a significant number of actionable gene alterations, increasing the therapeutic options for patients with advanced NSCLCs.


2019 ◽  
Vol 73 (2) ◽  
pp. 83-89 ◽  
Author(s):  
Jiuhong Pang ◽  
Tatyana Gindin ◽  
Mahesh Mansukhani ◽  
Helen Fernandes ◽  
Susan Hsiao

AimMicrosatellite instability (MSI), a hallmark of DNA mismatch repair deficiency, is a key molecular biomarker with multiple clinical implications including the selection of patients for immunotherapy, identifying patients who may have Lynch syndrome and predicting prognosis in patients with colorectal tumours. Next-generation sequencing (NGS) provides the opportunity to interrogate large numbers of microsatellite loci concurrently with genomic variants. We sought to develop a method to detect MSI that would not require paired normal tissue and would leverage the sequence data obtained from a broad range of tumours tested using our 467-gene NGS Columbia Combined Cancer Panel (CCCP).MethodsAltered mononucleotide and dinucleotide microsatellite loci across the CCCP region of interest were evaluated in clinical samples encompassing a diverse range of tumour types. The number of altered loci was used to develop a decision tree classifier model trained on the retrospectively collected cohort of 107 clinical cases sequenced by the CCCP assay.ResultsThe classifier was able to correctly classify all cases and was then used to analyse a test set of clinical cases (n=112) and was able to correctly predict their MSI status with 100% sensitivity and specificity. Analysis of recurrently altered loci identified alterations in genes involved in DNA repair, signalling and transcriptional regulation pathways, many of which have been implicated in MSI tumours.ConclusionThis study highlights the utility of this approach, which should be applicable to laboratories performing similar testing.


2016 ◽  
Vol 26 (1) ◽  
pp. 105-112 ◽  
Author(s):  
A. E. Bunnell ◽  
C. A. Garby ◽  
E. J. Pearson ◽  
S. A. Walker ◽  
L. E. Panos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document