scholarly journals Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Fenglin Liu ◽  
Yuanyuan Zhang ◽  
Lei Zhang ◽  
Ziyi Li ◽  
Qiao Fang ◽  
...  

Abstract Background Systematic interrogation of single-nucleotide variants (SNVs) is one of the most promising approaches to delineate the cellular heterogeneity and phylogenetic relationships at the single-cell level. While SNV detection from abundant single-cell RNA sequencing (scRNA-seq) data is applicable and cost-effective in identifying expressed variants, inferring sub-clones, and deciphering genotype-phenotype linkages, there is a lack of computational methods specifically developed for SNV calling in scRNA-seq. Although variant callers for bulk RNA-seq have been sporadically used in scRNA-seq, the performances of different tools have not been assessed. Results Here, we perform a systematic comparison of seven tools including SAMtools, the GATK pipeline, CTAT, FreeBayes, MuTect2, Strelka2, and VarScan2, using both simulation and scRNA-seq datasets, and identify multiple elements influencing their performance. While the specificities are generally high, with sensitivities exceeding 90% for most tools when calling homozygous SNVs in high-confident coding regions with sufficient read depths, such sensitivities dramatically decrease when calling SNVs with low read depths, low variant allele frequencies, or in specific genomic contexts. SAMtools shows the highest sensitivity in most cases especially with low supporting reads, despite the relatively low specificity in introns or high-identity regions. Strelka2 shows consistently good performance when sufficient supporting reads are provided, while FreeBayes shows good performance in the cases of high variant allele frequencies. Conclusions We recommend SAMtools, Strelka2, FreeBayes, or CTAT, depending on the specific conditions of usage. Our study provides the first benchmarking to evaluate the performances of different SNV detection tools for scRNA-seq data.

2021 ◽  
Author(s):  
Alex Rogozhnikov ◽  
Pavan Ramkumar ◽  
Saul Kato ◽  
Sean Escola

Demultiplexing methods have facilitated the widespread use of single-cell RNA sequencing (scRNAseq) experiments by lowering costs and reducing technical variations. Here, we present demuxalot: a method for probabilistic genotype inference from aligned reads, with no assumptions about allele ratios and efficient incorporation of prior genotype information from historical experiments in a multi-batch setting. Our method efficiently incorporates additional information across reads originating from the same transcript, enabling up to 3x more calls per read relative to naive approaches. We also propose a novel and highly performant tradeoff between methods that rely on reference genotypes and methods that learn variants from the data, by selecting a small number of highly informative variants that maximize the marginal information with respect to reference single nucleotide variants (SNVs). Our resulting improved SNV-based demultiplex method is up to 3x faster, 3x more data efficient, and achieves significantly more accurate doublet discrimination than previously published methods. This approach renders scRNAseq feasible for the kind of large multi-batch, multi-donor studies that are required to prosecute diseases with heterogeneous genetic backgrounds.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 240 ◽  
Author(s):  
Prashant N. M. ◽  
Hongyu Liu ◽  
Pavlos Bousounis ◽  
Liam Spurr ◽  
Nawaf Alomran ◽  
...  

With the recent advances in single-cell RNA-sequencing (scRNA-seq) technologies, the estimation of allele expression from single cells is becoming increasingly reliable. Allele expression is both quantitative and dynamic and is an essential component of the genomic interactome. Here, we systematically estimate the allele expression from heterozygous single nucleotide variant (SNV) loci using scRNA-seq data generated on the 10×Genomics Chromium platform. We analyzed 26,640 human adipose-derived mesenchymal stem cells (from three healthy donors), sequenced to an average of 150K sequencing reads per cell (more than 4 billion scRNA-seq reads in total). High-quality SNV calls assessed in our study contained approximately 15% exonic and >50% intronic loci. To analyze the allele expression, we estimated the expressed variant allele fraction (VAFRNA) from SNV-aware alignments and analyzed its variance and distribution (mono- and bi-allelic) at different minimum sequencing read thresholds. Our analysis shows that when assessing positions covered by a minimum of three unique sequencing reads, over 50% of the heterozygous SNVs show bi-allelic expression, while at a threshold of 10 reads, nearly 90% of the SNVs are bi-allelic. In addition, our analysis demonstrates the feasibility of scVAFRNA estimation from current scRNA-seq datasets and shows that the 3′-based library generation protocol of 10×Genomics scRNA-seq data can be informative in SNV-based studies, including analyses of transcriptional kinetics.


2019 ◽  
Vol 28 (21) ◽  
pp. 3569-3583 ◽  
Author(s):  
Patricia M Schnepp ◽  
Mengjie Chen ◽  
Evan T Keller ◽  
Xiang Zhou

Abstract Integrating single-cell RNA sequencing (scRNA-seq) data with genotypes obtained from DNA sequencing studies facilitates the detection of functional genetic variants underlying cell type-specific gene expression variation. Unfortunately, most existing scRNA-seq studies do not come with DNA sequencing data; thus, being able to call single nucleotide variants (SNVs) from scRNA-seq data alone can provide crucial and complementary information, detection of functional SNVs, maximizing the potential of existing scRNA-seq studies. Here, we perform extensive analyses to evaluate the utility of two SNV calling pipelines (GATK and Monovar), originally designed for SNV calling in either bulk or single-cell DNA sequencing data. In both pipelines, we examined various parameter settings to determine the accuracy of the final SNV call set and provide practical recommendations for applied analysts. We found that combining all reads from the single cells and following GATK Best Practices resulted in the highest number of SNVs identified with a high concordance. In individual single cells, Monovar resulted in better quality SNVs even though none of the pipelines analyzed is capable of calling a reasonable number of SNVs with high accuracy. In addition, we found that SNV calling quality varies across different functional genomic regions. Our results open doors for novel ways to leverage the use of scRNA-seq for the future investigation of SNV function.


2020 ◽  
Vol 31 (9) ◽  
pp. 1977-1986 ◽  
Author(s):  
Andrew F. Malone ◽  
Haojia Wu ◽  
Catrina Fronick ◽  
Robert Fulton ◽  
Joseph P. Gaut ◽  
...  

BackgroundIn solid organ transplantation, donor-derived immune cells are assumed to decline with time after surgery. Whether donor leukocytes persist within kidney transplants or play any role in rejection is unknown, however, in part because of limited techniques for distinguishing recipient from donor cells.MethodsWhole-exome sequencing of donor and recipient DNA and single-cell RNA sequencing (scRNA-seq) of five human kidney transplant biopsy cores distinguished immune cell contributions from both participants. DNA-sequence comparisons used single nucleotide variants (SNVs) identified in the exome sequences across all samples.ResultsAnalysis of expressed SNVs in the scRNA-seq data set distinguished recipient versus donor origin for all 81,139 cells examined. The leukocyte donor/recipient ratio varied with rejection status for macrophages and with time post-transplant for lymphocytes. Recipient macrophages displayed inflammatory activation whereas donor macrophages demonstrated antigen presentation and complement signaling. Recipient-origin T cells expressed cytotoxic and proinflammatory genes consistent with an effector cell phenotype, whereas donor-origin T cells appeared quiescent, expressing oxidative phosphorylation genes. Finally, both donor and recipient T cell clones within the rejecting kidney suggested lymphoid aggregation. The results indicate that donor-origin macrophages and T cells have distinct transcriptional profiles compared with their recipient counterparts, and that donor macrophages can persist for years post-transplantation.ConclusionsAnalysis of single nucleotide variants and their expression in single cells provides a powerful novel approach to accurately define leukocyte chimerism in a complex organ such as a transplanted kidney, coupled with the ability to examine transcriptional profiles at single-cell resolution.PodcastThis article contains a podcast at https://www.asn-online.org/media/podcast/JASN/2020_08_07_JASN2020030326.mp3


2017 ◽  
Author(s):  
Aaron T. L. Lun ◽  
Fernando J. Calero-Nieto ◽  
Liora Haim-Vilmovsky ◽  
Berthold Göttgens ◽  
John C. Marioni

AbstractBy profiling the transcriptomes of individual cells, single-cell RNA sequencing provides unparalleled resolution to study cellular heterogeneity. However, this comes at the cost of high technical noise, including cell-specific biases in capture efficiency and library generation. One strategy for removing these biases is to add a constant amount of spike-in RNA to each cell, and to scale the observed expression values so that the coverage of spike-in RNA is constant across cells. This approach has previously been criticized as its accuracy depends on the precise addition of spike-in RNA to each sample, and on similarities in behaviour (e.g., capture efficiency) between the spike-in and endogenous transcripts. Here, we perform mixture experiments using two different sets of spike-in RNA to quantify the variance in the amount of spike-in RNA added to each well in a plate-based protocol. We also obtain an upper bound on the variance due to differences in behaviour between the two spike-in sets. We demonstrate that both factors are small contributors to the total technical variance and have only minor effects on downstream analyses such as detection of highly variable genes and clustering. Our results suggest that spike-in normalization is reliable enough for routine use in single-cell RNA sequencing data analyses.


2019 ◽  
Author(s):  
Haruka Ozaki ◽  
Tetsutaro Hayashi ◽  
Mana Umeda ◽  
Itoshi Nikaido

AbstractBackgroundRead coverage of RNA sequencing data reflects gene expression and RNA processing events. Single-cell RNA sequencing (scRNA-seq) methods, particularly “full-length” ones, provide read coverage of many individual cells and have the potential to reveal cellular heterogeneity in RNA transcription and processing. However, visualization tools suited to highlighting cell-to-cell heterogeneity in read coverage are still lacking.ResultsHere, we have developed Millefy, a tool for visualizing read coverage of scRNA-seq data in genomic contexts. Millefy is designed to show read coverage of all individual cells at once in genomic contexts and to highlight cell-to-cell heterogeneity in read coverage. By visualizing read coverage of all cells as a heat map and dynamically reordering cells based on diffusion maps, Millefy facilitates discovery of “local” region-specific, cell-to-cell heterogeneity in read coverage, including variability of transcribed regions.ConclusionsMillefy simplifies the examination of cellular heterogeneity in RNA transcription and processing events using scRNA-seq data. Millefy is available as an R package (https://github.com/yuifu/millefy) and a Docker image to help use Millefy on the Jupyter notebook (https://hub.docker.com/r/yuifu/datascience-notebook-millefy).


2021 ◽  
Author(s):  
Ke-Xu Xiong ◽  
Han-Lin Zhou ◽  
Jian-Hua Yin ◽  
Karsten Kristiansen ◽  
Huan-Ming Yang ◽  
...  

High-throughput single-cell RNA sequencing (scRNA-seq) is a popular method, but it is accompanied by doublet rate problems that disturb the downstream analysis. Several computational approaches have been developed to detect doublets. However, most of these methods have good performance in some datasets but lack stability in others; thus, it is difficult to regard a single method as the gold standard for each scenario, and it is a difficult and time-consuming task for researcher to choose the most appropriate software. To address these issues, we propose Chord which implements a machine learning algorithm that integrates multiple doublet detection methods. Chord had a higher accuracy and stability than the individual approaches on different datasets containing real and synthetic data. Moreover, Chord was designed with a modular architecture port, which has high flexibility and adaptability to the incorporation of any new tools. Chord is a general solution to the doublet detection problem.


Sign in / Sign up

Export Citation Format

Share Document