scholarly journals Addressing uncertainty in genome-scale metabolic model reconstruction and analysis

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
David B. Bernstein ◽  
Snorre Sulheim ◽  
Eivind Almaas ◽  
Daniel Segrè

AbstractThe reconstruction and analysis of genome-scale metabolic models constitutes a powerful systems biology approach, with applications ranging from basic understanding of genotype-phenotype mapping to solving biomedical and environmental problems. However, the biological insight obtained from these models is limited by multiple heterogeneous sources of uncertainty, which are often difficult to quantify. Here we review the major sources of uncertainty and survey existing approaches developed for representing and addressing them. A unified formal characterization of these uncertainties through probabilistic approaches and ensemble modeling will facilitate convergence towards consistent reconstruction pipelines, improved data integration algorithms, and more accurate assessment of predictive capacity.

2018 ◽  
Vol 46 (4) ◽  
pp. 931-936 ◽  
Author(s):  
José P. Faria ◽  
Miguel Rocha ◽  
Isabel Rocha ◽  
Christopher S. Henry

In the era of next-generation sequencing and ubiquitous assembly and binning of metagenomes, new putative genome sequences are being produced from isolate and microbiome samples at ever-increasing rates. Genome-scale metabolic models have enormous utility for supporting the analysis and predictive characterization of these genomes based on sequence data. As a result, tools for rapid automated reconstruction of metabolic models are becoming critically important for supporting the analysis of new genome sequences. Many tools and algorithms have now emerged to support rapid model reconstruction and analysis. Here, we are comparing and contrasting the capabilities and output of a variety of these tools, including ModelSEED, Raven Toolbox, PathwayTools, SuBliMinal Toolbox and merlin.


2019 ◽  
Author(s):  
Miguel Ponce-de-León ◽  
Iñigo Apaolaza ◽  
Alfonso Valencia ◽  
Francisco J. Planes

ABSTRACTWith the publication of high-quality genome-scale metabolic models for several organisms, the Systems Biology community has developed a number of algorithms for their analysis making use of ever growing –omics data. In particular, the reconstruction of the first genome-scale human metabolic model, Recon1, promoted the development of Context-Specific Model (CS-Model) reconstruction methods. This family of algorithms aims to identify the set of metabolic reactions that are active in a cell in a given condition using omics data, such as gene expression levels. Different CS-Model reconstruction algorithms have their own strengths and weaknesses depending on the problem under study and omics data available. However, after careful inspection, we found that all of these algorithms share common issues in the way GPR rules and gene expression data are treated. The first issue is related with how gapfilling reactions are managed after the reconstruction is conducted. The second issue concerns the molecular context, which is used to build the CS-model but neglected for posterior analyses. To evaluate the effect of these issues, we reconstructed ∼400 CS-Models of cancer cell lines and conducted gene essentiality analysis, using CRISPR–Cas9 essentiality data for validation purposes. Altogether, our results illustrate the importance of correcting the errors introduced during the GPR translation in many of the published metabolic reconstructions.


2015 ◽  
Vol 13 (02) ◽  
pp. 1550006 ◽  
Author(s):  
Nicolas Loira ◽  
Anna Zhukova ◽  
David James Sherman

Genome-scale metabolic models are a powerful tool to study the inner workings of biological systems and to guide applications. The advent of cheap sequencing has brought the opportunity to create metabolic maps of biotechnologically interesting organisms. While this drives the development of new methods and automatic tools, network reconstruction remains a time-consuming process where extensive manual curation is required. This curation introduces specific knowledge about the modeled organism, either explicitly in the form of molecular processes, or indirectly in the form of annotations of the model elements. Paradoxically, this knowledge is usually lost when reconstruction of a different organism is started. We introduce the Pantograph method for metabolic model reconstruction. This method combines a template reaction knowledge base, orthology mappings between two organisms, and experimental phenotypic evidence, to build a genome-scale metabolic model for a target organism. Our method infers implicit knowledge from annotations in the template, and rewrites these inferences to include them in the resulting model of the target organism. The generated model is well suited for manual curation. Scripts for evaluating the model with respect to experimental data are automatically generated, to aid curators in iterative improvement. We present an implementation of the Pantograph method, as a toolbox for genome-scale model reconstruction, curation and validation. This open source package can be obtained from: http://pathtastic.gforge.inria.fr .


2017 ◽  
Vol 6 (2) ◽  
pp. 149-160 ◽  
Author(s):  
P. Chellapandi ◽  
M. Bharathi ◽  
R. Prathiviraj ◽  
R. Sasikala ◽  
M. Vikraman

2021 ◽  
Vol 412 ◽  
pp. 115390
Author(s):  
Kristopher D. Rawls ◽  
Bonnie V. Dougherty ◽  
Kalyan C. Vinnakota ◽  
Venkat R. Pannala ◽  
Anders Wallqvist ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jingru Zhou ◽  
Yingping Zhuang ◽  
Jianye Xia

Abstract Background Genome-scale metabolic model (GSMM) is a powerful tool for the study of cellular metabolic characteristics. With the development of multi-omics measurement techniques in recent years, new methods that integrating multi-omics data into the GSMM show promising effects on the predicted results. It does not only improve the accuracy of phenotype prediction but also enhances the reliability of the model for simulating complex biochemical phenomena, which can promote theoretical breakthroughs for specific gene target identification or better understanding the cell metabolism on the system level. Results Based on the basic GSMM model iHL1210 of Aspergillus niger, we integrated large-scale enzyme kinetics and proteomics data to establish a GSMM based on enzyme constraints, termed a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO). The results show that enzyme constraints effectively improve the model’s phenotype prediction ability, and extended the model’s potential to guide target gene identification through predicting metabolic phenotype changes of A. niger by simulating gene knockout. In addition, enzyme constraints significantly reduced the solution space of the model, i.e., flux variability over 40.10% metabolic reactions were significantly reduced. The new model showed also versatility in other aspects, like estimating large-scale $$k_{{cat}}$$ k cat values, predicting the differential expression of enzymes under different growth conditions. Conclusions This study shows that incorporating enzymes’ abundance information into GSMM is very effective for improving model performance with A. niger. Enzyme-constrained model can be used as a powerful tool for predicting the metabolic phenotype of A. niger by incorporating proteome data. In the foreseeable future, with the fast development of measurement techniques, and more precise and rich proteomics quantitative data being obtained for A. niger, the enzyme-constrained GSMM model will show greater application space on the system level.


Sign in / Sign up

Export Citation Format

Share Document