scholarly journals The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant

2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Yosuke Shida ◽  
Kaori Yamaguchi ◽  
Mikiko Nitta ◽  
Ayana Nakamura ◽  
Machiko Takahashi ◽  
...  
2014 ◽  
Vol 7 (12) ◽  
pp. 1788-1792 ◽  
Author(s):  
Chuchuan Fan ◽  
Yudi Wu ◽  
Qingyong Yang ◽  
Yang Yang ◽  
Qingwei Meng ◽  
...  

2020 ◽  
Vol 10 (9) ◽  
pp. 3309-3319 ◽  
Author(s):  
Ajith V Pankajam ◽  
Suman Dash ◽  
Asma Saifudeen ◽  
Abhishek Dutta ◽  
Koodali T Nishant

Abstract A growing body of evidence suggests that mutation rates exhibit intra-species specific variation. We estimated genome-wide loss of heterozygosity (LOH), gross chromosomal changes, and single nucleotide mutation rates to determine intra-species specific differences in hybrid and homozygous strains of Saccharomyces cerevisiae. The mutation accumulation lines of the S. cerevisiae hybrid backgrounds - S288c/YJM789 (S/Y) and S288c/RM11-1a (S/R) were analyzed along with the homozygous diploids RM11, S288c, and YJM145. LOH was extensive in both S/Y and S/R hybrid backgrounds. The S/Y background also showed longer LOH tracts, gross chromosomal changes, and aneuploidy. Short copy number aberrations were observed in the S/R background. LOH data from the S/Y and S/R hybrids were used to construct a LOH map for S288c to identify hotspots. Further, we observe up to a sixfold difference in single nucleotide mutation rates among the S. cerevisiae S/Y and S/R genetic backgrounds. Our results demonstrate LOH is common during mitotic divisions in S. cerevisiae hybrids and also highlight genome-wide differences in LOH patterns and rates of single nucleotide mutations between commonly used S. cerevisiae hybrid genetic backgrounds.


The Analyst ◽  
2019 ◽  
Vol 144 (7) ◽  
pp. 2284-2290 ◽  
Author(s):  
Wei Zhou ◽  
Ze Yu ◽  
Ge Ma ◽  
Tian Jin ◽  
Yunchao Li ◽  
...  

Here, we found that Thioflavin T (ThT) could specifically bind with a G-GGG unit (named as “Guanine Island”) in double stranded DNA (ds-DNA).


Nature ◽  
2008 ◽  
Vol 455 (7209) ◽  
pp. 105-108 ◽  
Author(s):  
Dacheng Tian ◽  
Qiang Wang ◽  
Pengfei Zhang ◽  
Hitoshi Araki ◽  
Sihai Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document