scholarly journals Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Morakot Krajang ◽  
Kwanruthai Malairuang ◽  
Jatuporn Sukna ◽  
Krongchan Rattanapradit ◽  
Saethawat Chamsart

Abstract Background A single-step ethanol production is the combination of raw cassava starch hydrolysis and fermentation. For the development of raw starch consolidated bioprocessing technologies, this research was to investigate the optimum conditions and technical procedures for the production of ethanol from raw cassava starch in a single step. It successfully resulted in high yields and productivities of all the experiments from the laboratory, the pilot, through the industrial scales. Yields of ethanol concentration are comparable with those in the commercial industries that use molasses and hydrolyzed starch as the raw materials. Results Before single-step ethanol production, studies of raw cassava starch hydrolysis by a granular starch hydrolyzing enzyme, StargenTM002, were carefully conducted. It successfully converted 80.19% (w/v) of raw cassava starch to glucose at a concentration of 176.41 g/L with a productivity at 2.45 g/L/h when it was pretreated at 60 °C for 1 h with 0.10% (v/w dry starch basis) of Distillase ASP before hydrolysis. The single-step ethanol production at 34 °C in a 5-L fermenter showed that Saccharomyces cerevisiae (Fali, active dry yeast) produced the maximum ethanol concentration, pmax at 81.86 g/L (10.37% v/v) with a yield coefficient, Yp/s of 0.43 g/g, a productivity or production rate, rp at 1.14 g/L/h and an efficiency, Ef of 75.29%. Scale-up experiments of the single-step ethanol production using this method, from the 5-L fermenter to the 200-L fermenter and further to the 3000-L industrial fermenter were successfully achieved with essentially good results. The values of pmax,Yp/s, rp, and Ef of the 200-L scale were at 80.85 g/L (10.25% v/v), 0.42 g/g, 1.12 g/L/h and 74.40%, respectively, and those of the 3000-L scale were at 70.74 g/L (8.97% v/v), 0.38 g/g, 0.98 g/L/h and 67.56%, respectively. Because of using raw starch, major by-products, i.e., glycerol, lactic acid, and acetic acid of all three scales were very low, in ranges of 0.940–1.140, 0.046–0.052, 0.000–0.059 (% w/v), respectively, where are less than those values in the industries. Conclusion The single-step ethanol production using the combination of raw cassava starch hydrolysis and fermentation of three fermentation scales in this study is practicable and feasible for the scale-up of industrial production of ethanol from raw starch.

2020 ◽  
Author(s):  
Morakot Krajang ◽  
Kwanruthai Malairuang ◽  
Jatuporn Sukna ◽  
Krongchan Rattanapradit ◽  
Saethawat Chamsart

Abstract Background: A single-step ethanol production is the combination of raw cassava starch hydrolysis and fermentation. For the development of raw starch consolidated bioprocessing technologies, this research was to investigate the optimum conditions and technical procedures for the production of ethanol from raw cassava starch in a single step. It successfully resulted in high yields and productivities of all the experiments from the laboratory, the pilot, through the industrial scales. Yields of ethanol concentration are comparable with those in the commercial industries that use molasses and hydrolyzed starch as the raw materials.Results: Before single-step ethanol production, studies of raw cassava starch hydrolysis by a granular starch hydrolyzing enzyme, StargenTM002, were carefully conducted. It successfully converted 80.19% (w/v) of raw cassava starch to glucose at a concentration of 176.41 g/L with a productivity at 2.45 g/L/h when it was pretreated at 60 °C for 1 h with 0.10% (v/w dry starch basis) of Distillase ASP before hydrolysis. The single-step ethanol production at 34 °C in a 5-L fermenter showed that Saccharomyces cerevisiae (Fali, active dry yeast) produced the maximum ethanol concentration, pmax at 81.86 g/L (10.37% v/v) with a yield coefficient, Yp/s of 0.43 g/g, a productivity or production rate, rp at 1.14 g/L/h and an efficiency, Ef of 75.29%. Scale-up experiments of the single-step ethanol production using this method, from the 5-L fermenter to the 200-L fermenter and further to the 3,000-L industrial fermenter were successfully achieved with essentially good results. The values of pmax, Yp/s, rp, and Ef of the 200-L scale were at 80.85 g/L (10.25% v/v), 0.42 g/g, 1.12 g/L/h and 74.40%, respectively and those of the 3,000-L scale were at 70.74 g/L (8.97% v/v), 0.38 g/g, 0.98 g/L/h and 67.56%, respectively. Because of using raw starch, major by-products, i.e., glycerol, lactic acid, and acetic acid of all three scales were very low, in ranges of 0.940−1.140, 0.046−0.052, 0.000−0.059 (% w/v), respectively, where are less than those values in the industries.Conclusion: The single-step ethanol production using the combination of raw cassava starch hydrolysis and fermentation of three fermentation scales in this study is practicable and feasible for the scale-up of industrial production of ethanol from raw starch.


Author(s):  
Morakot Krajang ◽  
Kwanruthai Malairuang ◽  
Jatuporn Sukna ◽  
Krongchan Rattanapradit ◽  
Saethawat Chamsart

Abstract Background: A single-step ethanol production is the combination of raw cassava starch hydrolysis and fermentation. For the development of raw starch consolidated bioprocessing (CBP) technologies, this research work was to investigate the optimum conditions and technical procedures for the production of ethanol from raw cassava starch in a single step. This resulted high yields and productivities of all the experiments from the laboratory, the pilot, through the industrial scales. The yields of ethanol concentration are comparable with those in the commercial industries that use molasses and hydrolyzed starch as the raw materials. Results: Before single-step ethanol production, the studies of raw cassava starch hydrolysis by a granular starch hydrolyzing enzyme, StargenTM002, were carefully conducted. It successfully converted 80.19% (w/v) of raw cassava starch to glucose at a concentration of 176.41 g/L with a productivity of 2.45 g/L/h when the raw starch was pretreated at 60 °C for 1 h with 0.10% (v/w dry starch basis) of Distillase ASP before hydrolysis. A single-step ethanol production at 34 °C in a 5-L fermenter showed that S. cerevisiae (Fali, active dry yeast) produced the maximum ethanol concentration, p of 81.86 g/L (10.43% v/v) with a yield coefficient, Y p/s of 0.41 g/g, a productivity or production rate, r p of 1.14 g/L/h with an efficiency, Ef of 71.44%. The scale-up experiments of the single-step ethanol production using this method, from the 5-L fermenter to the 200-L fermenter and further to the 3,000-L industrial fermenter were successfully achieved with essentially good results. The p, Y p/s , r p , and Ef values of the 200-L scale were 80.85 g/L (10.23% v/v), 0.41 g/g, 1.12 g/L/h and 72.47% , respectively ; of the 3,000-L scale were 70.74 g/L (9.01% v/v), 0.34 g/g, 0.98 g/L/h and 59.82% , respectively. Because of using raw starch, the major by-products of all the three scales were very low; glycerol lactic acid and acetic acid, in ranges of 0.94-1.14%, 0.046-0.052%, 0-0.059% (w/v), respectively, where are less than those values in the industries. Conclusions: This single-step ethanol production using a combination of raw cassava starch hydrolysis and fermentation of the three fermentation scales here is practicable and feasible for the scale-up of industrial production of ethanol from raw starch.


2003 ◽  
Vol 8 (2) ◽  
pp. 106-111 ◽  
Author(s):  
Jin Ha Lee ◽  
Sun Ok Lee ◽  
Gwang Ok Lee ◽  
Eun Seong Seo ◽  
Suk Sang Chang ◽  
...  

2006 ◽  
Vol 24 (1-2) ◽  
pp. 121-127 ◽  
Author(s):  
Anders Viksø-Nielsen ◽  
Carsten Andersen ◽  
Tine Hoff ◽  
Sven Pedersen

2014 ◽  
Vol 79 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Nikola Gligorijevic ◽  
Nikola Stevanovic ◽  
Nikola Loncar ◽  
Rada Baosic ◽  
Zoran Vujcic ◽  
...  

Several natural isolates of Bacillus strains namely 5B, 12B, 16B, 18 and 24B were grown on two different temperatures in submerged fermentation for the raw-starch-digesting a-amylases production. All strains except Bacillus sp. 18 produced more ?-amylase on 37?C. The hydrolysis of raw corn starch followed same pattern. Efficient hydrolysis was obtained with ?-amylases from Bacillus sp. 5B, 12B, 16B and 24B grown on 37?C and Bacillus sp. 18 grown on 50?C. Zymography after isoelectric focusing shown that ?-amylases were produced in multiple forms, from 2 to 6, depending on the strain when they were growing at 37 ?C, while growing at 50?C induced only 1 or 2 isoforms. TLC analysis of hydrolysis products of raw corn and soluble starch by ?-amylases revealed production of various mixtures of oligosaccharides. In most cases G3 was the most dominant product from soluble starch while G2, G3 and G5 were the main products of raw starch hydrolysis. This indicates that obtained a-amylases can be used for starch liquefying or short-chain-oligosaccharide forming, depending on what type of starch (raw or soluble) was used for the hydrolysis.


2021 ◽  
Author(s):  
Fatemeh Maleki ◽  
Mohammad Changizian ◽  
Narges Zolfaghari ◽  
Sarah Rajaei ◽  
Kambiz Akbari Noghabi ◽  
...  

Abstract Background: Bioethanol produced by fermentative microorganisms is regarded as an alternative to fossil fuel. Bioethanol to be used as a viable energy source must be produced cost-effectively by removing expense-intensive steps such as the enzymatic hydrolysis of substrate. Consolidated bioprocessing (CBP) is believed to be a practical solution combining saccharification and fermentation in a single step catalyzed by a microorganism. Bacillus subtills with innate ability to grow on a diversity of carbohydrates seems promising for affordable CBP bioethanol production using renewable plant biomass and wastes. Results: In this study, the genes encoding alcohol dehydrogenase from Z. mobilis (adhZ) and S. cerevisiae (adhS) were each used with Z. mobilis pyruvate decarboxylase gene (pdcZ) to create ethanologenic operons in a lactate-deficient (Δldh) B. subtilis resulting in NZ and NZS strains, respectively. The S. cerevisiae adhS caused significantly more ethanol production by NZS and therefore was used to make two other operons including one with double copies of both pdcZ and adhS and the other with a single pdcZ but double adhS genes expressed in N(ZS)2 and NZS2 strains, respectively. In addition, two fusion genes were constructed with pdcZ and adhS in alternate orientations and used for ethanol production by the harboring strains namely NZ:S and NS:Z, respectively. While the increase of gene dosage was not associated with elevated carbon flow for ethanol production, the fusion gene adhS:pdcZ resulted in more than two times increase of productivity by strain NS:Z as compared with NZS during 48 h fermentation. The CBP ethanol production by NZS and NS:Z using potatoes resulted in 16.3 g/L and 21.5 g/L ethanol during 96 h fermentation, respectively. Conclusion: In this study for the first time, Bacillus subtilis was successfully used for CBP ethanol production with S. cerevisiae alcohol dehydrogenase. The results of the study provide insights on the potentials of B. subtilis for affordable bioethanol production from inexpensive plant biomass and wastes. However, the potentials need to be improved by metabolic and process engineering for higher yields of ethanol production and plant biomass utilization.


2003 ◽  
Vol 10 (5) ◽  
pp. 459-468 ◽  
Author(s):  
Dominic Wong ◽  
Sarah Batt ◽  
Charles Lee ◽  
George Robertson

Sign in / Sign up

Export Citation Format

Share Document