scholarly journals Field evaluation of transgenic hybrid poplars with desirable wood properties and enhanced growth for biofuel production by bicistronic expression of PdGA20ox1 and PtrMYB3 in wood-forming tissue

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jin-Seong Cho ◽  
Min-Ha Kim ◽  
Eun-Kyung Bae ◽  
Young-Im Choi ◽  
Hyung-Woo Jeon ◽  
...  

Abstract Background To create an ideotype woody bioenergy crop with desirable growth and biomass properties, we utilized the viral 2A-meidated bicistronic expression strategy to express both PtrMYB3 (MYB46 ortholog of Populus trichocarpa, a master regulator of secondary wall biosynthesis) and PdGA20ox1 (a GA20-oxidase from Pinus densiflora that produces gibberellins) in wood-forming tissue (i.e., developing xylem). Results Transgenic Arabidopsis plants expressing the gene construct DX15::PdGA20ox1-2A-PtrMYB3 showed a significant increase in both stem fresh weight (threefold) and secondary wall thickening (1.27-fold) relative to wild-type (WT) plants. Transgenic poplars harboring the same gene construct grown in a greenhouse for 60 days had a stem fresh weight up to 2.6-fold greater than that of WT plants. In a living modified organism (LMO) field test conducted for 3 months of active growing season, the stem height and diameter growth of the transgenic poplars were 1.7- and 1.6-fold higher than those of WT plants, respectively, with minimal adverse growth defects. Although no significant changes in secondary wall thickening of the stem tissue of the transgenic poplars were observed, cellulose content was increased up to 14.4 wt% compared to WT, resulting in improved saccharification efficiency of the transgenic poplars. Moreover, enhanced woody biomass production by the transgenic poplars was further validated by re-planting in the same LMO field for additional two growing seasons. Conclusions Taken together, these results show considerably enhanced wood formation of our transgenic poplars, with improved wood quality for biofuel production.

2013 ◽  
Vol 35 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Zeng-Guang WANG ◽  
Guo-Hua CHAI ◽  
Zhi-Yao WANG ◽  
Xian-Feng TANG ◽  
Chang-Jiang SUN ◽  
...  

2007 ◽  
Vol 48 (12) ◽  
pp. 1659-1672 ◽  
Author(s):  
Chanhui Lee ◽  
Ruiqin Zhong ◽  
Elizabeth A. Richardson ◽  
David S. Himmelsbach ◽  
Brooks T. McPhail ◽  
...  

2018 ◽  
Vol 16 (10) ◽  
pp. 1735-1747 ◽  
Author(s):  
Qian Yan ◽  
Yi Wang ◽  
Qian Li ◽  
Zhengsheng Zhang ◽  
Hui Ding ◽  
...  

1965 ◽  
Vol 24 (3) ◽  
pp. 415-431 ◽  
Author(s):  
James Cronshaw ◽  
G. Benjamin Bouck

Differentiating xylem elements of Avena coleoptiles have been examined by light and electron microscopy. Fixation in 2 per cent phosphate-buffered osmium tetroxide and in 6 per cent glutaraldehyde, followed by 2 per cent osmium tetroxide, revealed details of the cell wall and cytoplasmic fine structure. The localized secondary wall thickening identified the xylem elements and indicated their state of differentiation. These differentiating xylem elements have dense cytoplasmic contents in which the dictyosomes and elements of rough endoplasmic reticulum are especially numerous. Vesicles are associated with the dictyosomes and are found throughout the cytoplasm. In many cases, these vesicles have electron-opaque contents. "Microtubules" are abundant in the peripheral cytoplasm and are always associated with the secondary wall thickenings. These microtubules are oriented in a direction parallel to the microfibrillar direction of the thickenings. Other tubules are frequently found between the cell wall and the plasma membrane. Our results support the view that the morphological association of the "microtubules" with developing cell wall thickenings may have a functional significance, especially with respect to the orientation of the microfibrils. Dictyosomes and endoplasmic reticulum may have a function in some way connected with the synthetic mechanism of cell wall deposition.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tianyu Xu ◽  
Lixiang Zhang ◽  
Ze Li

Abstract Xylem vessels are the channels used for water transport in Jatropha curcas L. Vessel complexity has a great influence on water transport. Therefore, using anatomical experiments and numerical simulations, the water transport characteristics of J. curcas L xylem vessels with perforation plate and secondary wall thickening (pit structures) were analyzed. The results showed that the xylem vessel in J. curcas provided a low resistance path. The xylem vessel resistance was composed of three elements: smooth vessels, secondary wall thickening and perforation plate. The proportion of smooth vessel resistance was the largest, accounting for 66.20% of the total resistance. Then the secondary wall thickening resistance accounted for 30.20% of the total resistance, and finally the perforation plate resistance accounted for 3.60% of the total resistance. The total resistance of the vessel model was positively correlated with the pit depth, perforation plate height and perforation plate width and negatively correlated with the vessel inner diameter and pit membrane permeability. The vessel inner diameter and the pit depth had a great influence on the total resistance. The total resistance of the vessel inner diameter of 52 µm was 89.15% higher than that of 61 µm, the total resistance of the pit depth of 5.6 µm was 21.98% higher than that of 2.6 µm. The pit structure in the secondary wall thickening caused the vessel to be transported radially, and the radial transmission efficiency of the vessel was positively correlated with the pit depth and pit membrane permeability and negatively correlated with the vessel inner diameter. The pit membrane permeability had the greatest influence on the radial transmission efficiency, and its radial transmission efficiency was 0–5.09%.


2020 ◽  
Author(s):  
Xianqiang Wang ◽  
Denghui Wang ◽  
Wenjian Xu ◽  
Lingfei Kong ◽  
Xiao Ye ◽  
...  

Abstract Secondary wall thickening in the sclerenchyma cells is strictly controlled by a complex network of transcription factors in vascular plants. However, little is known about the epigenetic mechanism regulating secondary wall biosynthesis. In this study, we identified that ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1), a H3K4-histone methyltransferase, mediates the regulation of fiber cell wall development in inflorescence stems of Arabidopsis thaliana. Genome-wide analysis revealed that the up-regulation of genes involved in secondary wall formation during stem development is largely coordinated by increasing level of H3K4 tri-methylation. Among all histone methyltransferases for H3K4me3 in Arabidopsis, ATX1 is markedly increased during the inflorescence stem development and loss-of-function mutant atx1 was impaired in secondary wall thickening in interfascicular fibers. Genetic analysis showed that ATX1 positively regulates secondary wall deposition through activating the expression of secondary wall NAC master switch genes, SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). We further identified that ATX1 directly binds the loci of SND1 and NST1, and activates their expression by increasing H3K4me3 levels at these loci. Taken together, our results reveal that ATX1 plays a key role in the regulation of secondary wall biosynthesis in interfascicular fibers during inflorescence stem development of Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document