scholarly journals A first report of Thelazia callipaeda infection in Phortica okadai and wildlife in national nature reserves in China

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yipeng Jin ◽  
Zichen Liu ◽  
Jiaqi Wei ◽  
Yifan Wen ◽  
Nianjun He ◽  
...  

Abstract Background Thelazia callipaeda is a zoonotic parasitic nematode of the family Thelaziidae, with Phortica okadai as its intermediate host and only confirmed vector in China. China has the largest number of human cases of thelaziosis in the world. It is generally believed that infected domestic animals (dogs and cats) are the most important reservoir hosts of T. callipaeda, and thus pose a direct threat to humans. At present, there is little research or attention focused on the role of wildlife in the transmission cycle of thelaziosis in nature reserves. Methods We selected locations in four national nature reserves across China to monitor P. okadai and wildlife. We used a fly-trap method to monitor P. okadai density. Morphological analysis of the parasites collected from the conjunctival sac of the infected wildlife was undertaken as the first step in species identification, and polymerase chain reaction (PCR) was used for species confirmation. Results In 2019, the density of P. okadai in Foping National Nature Reserve in China increased sharply, and infected P. okadai were newly found in the reserve. Giant panda, wild boar, leopard cat, and black bear were found to be newly infected with T. callipaeda (one individual of each species). A total of four worms were collected, one from each species of wildlife. The four worms were identified as T. callipaeda by their morphological characteristics; species identification was confirmed by PCR amplification. Conclusions To the best of our knowledge, this is the first report of T. callipaeda infection in P. okadai as well as in a variety of wildlife, including giant panda, in nature reserves in China. These results indicate that there is a transmission cycle of T. callipaeda among wildlife in these nature reserves. The increasing number of case reports of thelaziosis in wildlife suggest a likely risk of T. callipaeda infection for the inhabitants of villages situated around nature reserves.

2020 ◽  
Author(s):  
Yipeng Jin ◽  
Zichen Liu ◽  
Jiaqi Wei ◽  
Yifan Wen ◽  
Nianjun He ◽  
...  

Abstract Background: Thelazia callipaeda is a zoonotic parasitic nematode of the family Thelaziidae, with Phortica okadai as the intermediate host and the only confirmed vector in China. China has the largest number of cases of thelaziosis in humans of the world. It is generally believed that domestic animals (dogs and cats) are the most important reservoir hosts of Thelazia callipaeda and directly threaten humans. At present, there is not much research and attention on the role of wildlife in the transmission cycle of thelaziosis in wildlife nature reserves.Methods: During 2016-2019, we selected four wildlife national nature reserve across the country as monitoring points for Phortica okadai and wildlife, and we chose to use fly-trap method for monitoring Phortica okadai density. Morphological analysis of the parasites collected from the conjunctival sac of the wildlife was taken as the first step, and a specific PCR was used for exact confirmation.Results: In 2019, the density of Phortica okadai in Foping National Nature Reserve of China, increased sharply and infected Phortica okadai were newly found in wildlife nature reserves. Wild giant panda, wild boar, leopard cat, and black bear were newly found to be infected by Thelazia callipaeda (one animal of each species). A total of four worms were collected and one worm was collected from each animals. The morphologic characteristics of the four worms led to their identification as Thelazia callipaeda, which was molecularly confirmed by a specific PCR amplification.Conclusions: This is the first report of Phortica okadai as well as a variety of wildlife including wild giant panda infected by Thelazia callipaeda in wildlife nature reserves in China. This indicates that there has been a transmission cycle of thelaziosis among wildlife in wildlife nature reserves. The increasing number of case reports in wildlife suggests the likely risk of infection of Thelazia callipaeda in villagers around wildlife nature reserves.


2020 ◽  
Author(s):  
Yipeng Jin ◽  
Zichen Liu ◽  
Jiaqi Wei ◽  
Yifan Wen ◽  
Nianjun He ◽  
...  

Abstract Background: Thelazia callipaeda is a zoonotic parasitic nematode of the family Thelaziidae, with Phortica okadai as the intermediate host and the only confirmed vector in China. China has the largest number of cases of thelaziosis in humans of the world. It is generally believed that the infected domestic animals (dogs and cats) are the most important reservoir hosts of Thelazia callipaeda and directly threaten humans. At present, there is not much research and attention on the role of wildlife in the transmission cycle of thelaziosis in wildlife nature reserves.Methods: During 2016-2019, we selected four wildlife national nature reserve across the country as monitoring points for Phortica okadai and wildlife, and we chose to use fly-trap method for monitoring Phortica okadai density. Morphological analysis of the parasites collected from the conjunctival sac of the wildlife was taken as the first step, and a specific PCR was used for exact confirmation.Results: In 2019, the density of Phortica okadai in Foping National Nature Reserve of China, increased sharply and infected Phortica okadai were newly found in wildlife nature reserves. Wild giant panda, wild boar, leopard cat, and black bear were newly found to be infected by Thelazia callipaeda (one animal of each species). A total of four worms were collected and one worm was collected from each animals. The morphologic characteristics of the four worms led to their identification as Thelazia callipaeda, which was molecularly confirmed by a specific PCR amplification.Conclusions: This is the first report of Phortica okadai as well as a variety of wildlife including wild giant panda infected by Thelazia callipaeda in wildlife nature reserves in China. This indicates that there has been a transmission cycle of thelaziosis among wildlife in wildlife nature reserves. The increasing number of case reports in wildlife suggests the likely risk of infection of Thelazia callipaeda in villagers around wildlife nature reserves.


Plant Disease ◽  
2021 ◽  
Author(s):  
Wentao Wu ◽  
Kunhao Ye ◽  
Zhu-hua Wang ◽  
Liwei Guo ◽  
Shu-sheng Zhu ◽  
...  

Maidong (Ophiopogon japonicus) is a perennial evergreen plant of the Asparagaceae, occurring mainly in China, Japan, Vietnam, and India. It grows in the damp place on the hillside below 2000 meters above sea level, under the forest or beside the stream;It has been widely cultivated in the Sichuan ofhina for medicinal uses; and it is included in the Chinese Pharmacopoeia. During April 2019, Maidong plants exhibiting symptoms of stunting, leaf wilting, and multiple galls in the roots associated with root-knot nematode (Meloidogyne sp.) were detected in a commercial field in near the city of Mianyang (N105°42′, E30°93′), Sichuan, China. The second-stage juveniles (J2) were collected from the soil in the root zone, and adult females were dissected from roots. Population densities of J2 ranged from 190 to 255 per 100 cm3. Subsequently, individual females (n=20) were extracted from root samples and submitted to Meloidogyne species identification by perineal pattern morphological analysis (n=20), and morphometric measurements of second stage juveniles (J2) (n = 20). The J2 showed the following morphometric characters:body length = 475.5 ± 24.2 µm, tail length = 55.2 ± 6.43µm, stylet length = 12.4 ± 1.56 µm and distance from dorsal esophageal gland opening to the stylet knot (DGO) = 2.97 ± 0.44 μm; perineal patterns of females showed a low dorsal arch, with lateral field marked by forked and broken striae, no punctate markings between anus and tail terminus were observed. These morphological characteristics are consistent with Meloidogyne arenaria (Neves et al. 2016). In addition, to confirm species identification, DNA was extracted from females (Blok, et al. 1997) and D2/D3 fragments of the 28S rRNA was amplified using the universal primers D2A/D3B. The DNA fragment obtained showed a 754 bp length (GenBank accession no. MW965614) that was sequenced and analyzed, sequences were 99.8% identical to the MH359158, KX151138 and EU364889 M. arenaria sequences. Furthermore, species-specific SCAR primers Far/Rar were used as described by Zijlstra et al. 2000. The PCR produced approximately 420 bp sequences, which was identical to that previously reported for M. arenaria (Zijlstra et al. 2000). Morphological and molecular characterization supports the identification of the isolate found on Ophiopogon japonicus as M. arenaria. To verify the nematode pathogenicity on Maidong plants, Maidong seed were planted in 20-cm diameter, 10-cm deep plastic pots containing 1000 cm3 sterilized soil and infested with 2000 M. arenaria J2 per seedling, using a sterilized micropipette. Plants were maintained at 20-25°C in a greenhouse. Control plants received sterile water, and the pathogenicity test was repeated three times. After 60 days, all inoculated plants showed reduced growth compared with control. The symptoms were similar to those observed in the field, a large number of galls (38.5 ± 2.4) and egg masses (18.5 ± 0.2) were found on each root system. Maidong was considered a good host for M. arenaria in Mianyang. M. arenaria is one of the most important plant parasitic nematode with a wide geographic distribution and causes great losses in many crops around the world (Perry et al. 2009). Through investigation, this is the first report worldwide of M. arenaria infecting Ophiopogon japonicus.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1432-1432 ◽  
Author(s):  
G. A. Lori ◽  
I. Malbrán ◽  
C. A. Mourelos

Annually, ~20 ha of sweet basil (Ocimum basilicum L.) are cultivated in greenhouses in the green belt area surrounding La Plata, Argentina, mainly for fresh consumption. In 2004 to 2007, basil plants of cv. Genovese showed wilt symptoms, necrosis of leaves and stems, asymmetrical growth, and discolored vascular tissue in greenhouses in La Plata. In 2007, the same symptoms were observed on plants of cv. Morada grown from seeds that were produced in Italy. Isolations were completed from root, crown, and stem sections of diseased plants of cv. Genovese from three greenhouses in 2004 to 2007, and from commercial seeds, stem sections, flowers, and seeds of diseased plants of cv. Morada in 2007. Seeds and portions of symptomatic tissues were surface-disinfested with 0.5% NaOCl for 1 min, rinsed in sterilized distilled water, air dried, and plated on 2% potato dextrose agar (PDA). Twenty-seven isolates were identified as Fusarium oxysporum Schltdl. based on morphological characteristics (4), and the species identification confirmed by PCR assay using a F. oxysporum f. sp. basilici-specific primer pair, Bik 1 and Bik 2 (1). Vegetative compatibility groups (VCGs) were determined for the 27 isolates through complementation of nitrate-nonutilizing mutants generated from these isolates (2) and paired with two Italian tester strains from an international collection (PVS-Fu 220 and PVS-Fu 125, provided by V. Balmas, Univeristà degli Studi di Sassari, Italy). All 27 isolates from Argentina belonged to VCG 0200. This is a unique VCG for F. oxysporum f. sp. basilici and has been identified in Israeli, American, and Italian isolates of the fungus (3). To fulfill Koch's postulates, pathogenicity tests were conducted with 12 isolates selected to reflect the multiple sources of fungal recovery, including root, crown, and stem sections, and leaves of diseased plants of cv. Genovese and commercial seeds, stem sections, flowers, and seeds of cv. Morada. Isolates were each grown on moistened (40% w/w), autoclaved, polished rice for 10 days, dried, and ground in a grinder. The number of CFU/g rice was determined by serial dilution plating onto PDA plates. The inoculum was added to autoclaved soil at 104 CFU/g dry soil. For each isolate, 8 healthy basil seedlings of each of cvs. Genovese and Morada were planted in pots, each containing 1 liter of inoculated soil. The control treatment consisted of 8 basil seedlings of each of the same cultivars planted in autoclaved soil mixed with sterilized, ground, polished rice. Plants were grown in a greenhouse with natural daylight for 45 to 50 days after inoculation. All inoculated plants showed the same symptoms described for the original basil plants. No symptoms were observed on the control plants. F. oxysporum f. sp. basilici was re-isolated from the vascular tissue of stems of symptomatic plants but not from control plants, and species identification confirmed by PCR assay as previously described. The presence of the pathogen was verified in the seed lot produced in Italy, suggesting that this could have been a source of inoculum that introduced the pathogen into La Plata, Argentina, as supported by the hypothesis that infested seed resulted in spread of a clonal population of F. oxysporum f. sp. basilici internationally (1). To our knowledge, this is the first report of F. oxysporum f. sp. basilici infecting sweet basil in Argentina. References: (1) A. Chiocchetti et al. Plant Dis. 85:607, 2001. (2) J. C. Correll et al. Phytopathology 77:1640, 1987. (3) A. Garibaldi et al. Plant Dis. 81:124, 1997. (4) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
J. Kim ◽  
O. Choi ◽  
J.-H. Kwon

Sweet persimmon (Diospyros kaki L.), a fruit tree in the Ebenaceae, is cultivated widely in Korea and Japan, the leading producers worldwide (2). Sweet persimmon fruit with flyspeck symptoms were collected from orchards in the Jinju area of Korea in November 2010. The fruit had fungal clusters of black, round to ovoid, sclerotium-like fungal bodies with no visible evidence of a mycelial mat. Orchard inspections revealed that disease incidence ranged from 10 to 20% in the surveyed area (approximately 10 ha) in 2010. Flyspeck symptoms were observed on immature and mature fruit. Sweet persimmon fruit peels with flyspeck symptoms were removed, dried, and individual speck lesions transferred to potato dextrose agar (PDA) and cultured at 22°C in the dark. Fungal isolates were obtained from flyspeck colonies on 10 sweet persimmon fruit harvested from each of three orchards. Fungal isolates that grew from the lesions were identified based on a previous description (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA sequence of a representative isolate was amplified and sequenced using primers ITS1 and ITS4 (4). The resulting 552-bp sequence was deposited in GenBank (Accession No. HQ698923). Comparison with ITS rDNA sequences showed 100% similarity with a sequence of Zygophiala wisconsinensis Batzer & Crous (GenBank Accession No. AY598855), which infects apple. To fulfill Koch's postulates, mature, intact sweet persimmon fruit were surface sterilized with 70% ethanol and dried. Three fungal isolates from this study were grown on PDA for 1 month. A colonized agar disc (5 mm in diameter) of each isolate was cut from the advancing margin of a colony with a sterilized cork borer, transferred to a 1.5-ml Eppendorf tube, and ground into a suspension of mycelial fragments and conidia in a blender with 1 ml of sterile, distilled water. The inoculum of each isolate was applied by swabbing a sweet persimmon fruit with the suspension. Three sweet persimmon fruit were inoculated per isolate. Three fruit were inoculated similarly with sterile, distilled water as the control treatment. After 1 month of incubation in a moist chamber at 22°C, the same fungal fruiting symptoms were reproduced as observed in the orchards, and the fungus was reisolated from these symptoms, but not from the control fruit, which were asymptomatic. On the basis of morphological characteristics of the fungal colonies, ITS sequence, and pathogenicity to persimmon fruit, the fungus was identified as Z. wisconsinensis (1). Flyspeck is readily isolated from sweet persimmon fruit in Korea and other sweet persimmon growing regions (3). The exposure of fruit to unusual weather conditions in Korea in recent years, including drought, and low-temperature and low-light situations in late spring, which are favorable for flyspeck, might be associated with an increase in occurrence of flyspeck on sweet persimmon fruit in Korea. To our knowledge, this is the first report of Z. wisconsinensis causing flyspeck on sweet persimmon in Korea. References: (1) J. C. Batzer et al. Mycologia 100:246, 2008. (2) FAOSTAT Database. Retrieved from http://faostat.fao.org/ , 2008. (3) H. Nasu and H. Kunoh. Plant Dis. 71:361, 1987. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 691-691 ◽  
Author(s):  
Y. H. Jeon ◽  
W. Cheon

Worldwide, Japanese yew (Taxus cuspidata Sieb. & Zucc.) is a popular garden tree, with large trees also being used for timber. In July 2012, leaf blight was observed on 10% of Japanese yew seedling leaves planted in a 500-m2 field in Andong, Gyeongsangbuk-do Province, South Korea. Typical symptoms included small, brown lesions that were first visible on the leaf margin, which enlarged and coalesced into the leaf becoming brown and blighted. To isolate potential pathogens from infected leaves, small sections of leaf tissue (5 to 10 mm2) were excised from lesion margins. Eight fungi were isolated from eight symptomatic trees, respectively. These fungi were hyphal tipped twice and transferred to potato dextrose agar (PDA) plates for incubation at 25°C. After 7 days, the fungi produced circular mats of white aerial mycelia. After 12 days, black acervuli containing slimy spore masses formed over the mycelial mats. Two representative isolates were further characterized. Their conidia were straight or slightly curved, fusiform to clavate, five-celled with constrictions at the septa, and 17.4 to 28.5 × 5.8 to 7.1 μm. Two to four 19.8- to 30.7-μm-long hyaline filamentous appendages (mostly three appendages) were attached to each apical cell, whereas one 3.7- to 7.1-μm-long hyaline appendage was attached to each basal cell, matching the description for Pestalotiopsis microspora (2). The pathogenicity of the two isolates was tested using 2-year-old plants (T. cuspidata var. nana Rehder; three plants per isolate) in 30-cm-diameter pots filled with soil under greenhouse conditions. The plants were inoculated by spraying the leaves with an atomizer with a conidial suspension (105 conidia/ml; ~50 ml on each plant) cultured for 10 days on PDA. As a control, three plants were inoculated with sterilized water. The plants were covered with plastic bags for 72 h to maintain high relative humidity (24 to 28°C). At 20 days after inoculation, small dark lesions enlarged into brown blight similar to that observed on naturally infected leaves. P. microspora was isolated from all inoculated plants, but not the controls. The fungus was confirmed by molecular analysis of the 5.8S subunit and flanking internal transcribed spaces (ITS1 and ITS2) of rDNA amplified from DNA extracted from single-spore cultures, and amplified with the ITS1/ITS4 primers and sequenced as previously described (4). Sequences were compared with other DNA sequences in GenBank using a BLASTN search. The P. microspora isolates were 99% homologous to other P. microspora (DQ456865, EU279435, FJ459951, and FJ459950). The morphological characteristics, pathogenicity, and molecular data assimilated in this study corresponded with the fungus P. microspora (2). This fungus has been previously reported as the causal agent of scab disease of Psidium guajava in Hawaii, the decline of Torreya taxifolia in Florida, and the leaf blight of Reineckea carnea in China (1,3). Therefore, this study presents the first report of P. microspora as a pathogen on T. cuspidata in Korea. The degree of pathogenicity of P. microspora to the Korean garden evergreen T. cuspidata requires quantification to determine its potential economic damage and to establish effective management practices. References: (1) D. F. Farr and A. Y. Rossman, Fungal Databases, Syst. Mycol. Microbiol. Lab. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ (2) L. M. Keith et al. Plant Dis. 90:16, 2006. (3) S. S. N. Maharachchikumbura. Fungal Diversity 50:167, 2011. (4) T. J. White et al. PCR Protocols. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Sign in / Sign up

Export Citation Format

Share Document