scholarly journals Microbiome diversity declines while distinct expansions of Th17, iNKT, and dendritic cell subpopulations emerge after anastomosis surgery

Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Emilie E. Vomhof-DeKrey ◽  
Allie Stover ◽  
Marc D. Basson

Abstract Background Anastomotic failure causes morbidity and mortality even in technically correct anastomoses. Initial leaks must be prevented by mucosal reapproximation across the anastomosis. Healing is a concerted effort between intestinal epithelial cells (IECs), immune cells, and commensal bacteria. IEC TLR4 activation and signaling is required for mucosal healing, leading to inflammatory factor release that recruits immune cells to limit bacteria invasion. TLR4 absence leads to mucosal damage from loss in epithelial proliferation, attenuated inflammatory response, and bacteria translocation. We hypothesize after anastomosis, an imbalance in microbiota will occur due to a decrease in TLR4 expression and will lead to changes in the immune milieu. Results We isolated fecal content and small intestinal leukocytes from murine, Roux-en-Y and end-to-end anastomoses, to identify microbiome changes and subsequent alterations in the regulatory and pro-inflammatory immune cells 3 days post-operative. TLR4+ IECs were impaired after anastomosis. Microbiome diversity was reduced, with Firmicutes, Bacteroidetes, and Saccharibacteria decreased and Proteobacteria increased. A distinct TCRβhi CD4+ T cells subset after anastomosis was 10–20-fold greater than in control mice. 84% were Th17 IL-17A/F+ IL-22+ and/or TNFα+. iNKT cells were increased and TCRβhi. 75% were iNKT IL-10+ and 13% iNKTh17 IL-22+. Additionally, Treg IL-10+ and IL-22+ cells were increased. A novel dendritic cell subset was identified in anastomotic regions that was CD11bhi CD103mid and was 93% IL-10+. Conclusions This anastomotic study demonstrated a decrease in IEC TLR4 expression and microbiome diversity which then coincided with increased expansion of regulatory and pro-inflammatory immune cells and cytokines. Defining the anastomotic mucosal environment could help inform innovative therapeutics to target excessive pro-inflammatory invasion and microbiome imbalance.

2004 ◽  
Vol 77 (4) ◽  
pp. 535-543 ◽  
Author(s):  
Mauritius Menges ◽  
Thomas Baumeister ◽  
Susanne Rössner ◽  
Patrizia Stoitzner ◽  
Nikolaus Romani ◽  
...  

2021 ◽  
Author(s):  
Müge Özkan ◽  
Yusuf Cem Eskiocak ◽  
Gerhard Wingender

Asthma is a heterogeneous disease with neutrophilic and eosinophilic asthma as the main endotypes that are distinguished according to the cells recruited to the airways and the related pathology. Eosinophilic asthma is the treatment-responsive endotype, which is mainly associated with allergic asthma. Neutrophilic asthma is a treatment-resistant endotype, affecting 5-10% of asthmatics. Although eosinophilic asthma is well-studied, a clear understanding of the endotypes is essential to devise effective diagnosis and treatment approaches for neutrophilic asthma. To this end, we directly compared adjuvant-induced mouse models of neutrophilic (CFA/OVA) and eosinophilic (Alum/OVA) asthma side-by-side. The immune response in the inflamed lung was analyzed by multi-parametric flow cytometry and immunofluorescence. We found that eosinophilic asthma was characterized by a preferential recruitment of interstitial macrophages and myeloid dendritic cells, whereas in neutrophilic asthma plasmacytoid dendritic cells, exudate macrophages, and GL7 + activated B cells predominated. This differential distribution of macrophage and dendritic cell subsets reveals important aspects of the pathophysiology of asthma and holds the promise to be used as biomarkers to diagnose asthma endotypes.


2016 ◽  
Vol 94 (5) ◽  
pp. 447-457 ◽  
Author(s):  
Christian Bryant ◽  
Phillip D Fromm ◽  
Fiona Kupresanin ◽  
Georgina Clark ◽  
Kenneth Lee ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Alejandra Marinelarena ◽  
Palash Bhattacharya ◽  
Prabhakaran Kumar ◽  
Ajay V. Maker ◽  
Bellur S. Prabhakar

Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 601-604 ◽  
Author(s):  
Shalin Naik ◽  
David Vremec ◽  
Li Wu ◽  
Meredith O'Keeffe ◽  
Ken Shortman

AbstractAlthough previous studies had indicated that the CD8α- and CD8α+ subtypes of murine dendritic cells (DCs) differ in immediate origin, a recent study found that intravenous transfer of CD8α- DCs led to CD8α+ DCs in the spleen several days later, suggesting a direct precursor-product relationship. We have repeated these experiments with a balance sheet approach. We find that though a few CD8α+ DCs can be generated in such experiments, this is a rare event and could be the result of a contaminant precursor. Most of the immediate precursors of CD8α+ DCs are cells that lack the phenotype of a recognizable DC. CD8α- DCs and CD8α+ DCs are not precursor-product related, though these sublineages may be connected further upstream.


2018 ◽  
Vol 141 (6) ◽  
pp. 2276-2279.e3 ◽  
Author(s):  
Federica Calzetti ◽  
Nicola Tamassia ◽  
Alessandra Micheletti ◽  
Giulia Finotti ◽  
Francisco Bianchetto-Aguilera ◽  
...  

2020 ◽  
Vol 205 (1) ◽  
pp. 121-132
Author(s):  
Cindy Audiger ◽  
Adrien Fois ◽  
Alyssa L. Thomas ◽  
Edith Janssen ◽  
Martin Pelletier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document