scholarly journals A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Chi Miao ◽  
Mingming Lei ◽  
Weina Hu ◽  
Shuo Han ◽  
Qi Wang
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Min Cai ◽  
Rui Shen ◽  
Lei Song ◽  
Minjie Lu ◽  
Jianguang Wang ◽  
...  

Abstract Stem cells are promising for the treatment of myocardial infarction (MI) and large animal models should be used to better understand the full spectrum of stem cell actions and preclinical evidences. In this study, bone marrow mesenchymal stem cells (BM-MSCs) were transplanted into swine heart ischemia model. To detect glucose metabolism in global left ventricular myocardium and regional myocardium, combined with assessment of cardiac function, positron emission tomography-computer tomography (PET-CT) and magnetic resonance imaging (MRI) were performed. To study the changes of glucose transporters and glucose metabolism-related enzymes and the signal transduction pathway, RT-PCR, Western-blot, and immunohistochemistry were carried out. Myocardium metabolic evaluation by PET-CT showed that mean signal intensity (MSI) increased in these segments at week 4 compared with that at week 1 after BM-MSCs transplantation. Moreover, MRI demonstrated significant function enhancement in BM-MSCs group. The gene expressions of glucose transporters (GLUT1, GLUT4), glucose metabolism-related enzymes phosphofructokinase (PFK), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) and 70-kDa ribosomal protein S6 kinase (p70s6k) in BM-MSCs injected areas were up-regulated at week 4 after BM-MSCs transplantation and this was confirmed by Western-blot and immunohistochemistry. In conclusions, BM-MSCs transplantation could improve cardiac function in swine MI model by activation of mTOR signal transduction pathway.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ling Guo ◽  
Juan Du ◽  
Dan-feng Yuan ◽  
Ya Zhang ◽  
Shu Zhang ◽  
...  

Abstract Background The transplantation of bone marrow mesenchymal stem cells (BMSCs) is a promising therapeutic strategy for wound healing. However, the poor migration capacity and low survival rate of transplanted BMSCs in wounds weaken their potential application. Objective To identify the optimal protocol for BMSCs preconditioned with H2O2 and improve the therapeutic efficacy using H2O2-preconditioned BMSCs in wound healing. Methods Mouse BMSCs were exposed to various concentrations of H2O2, and the key cellular functional properties were assessed to determine the optimal precondition with H2O2. The H2O2-preconditioned BMSCs were transplanted into mice with full-thickness excisional wounds to evaluate their healing capacity and tissue engraftment. Results Treatment BMSCs with 50 μM H2O2 for 12 h could significantly enhance their proliferation, migration, and survival by maximizing the upregulation of cyclin D1, SDF-1, and its receptors CXCR4/7 expressions, and activating the PI3K/Akt/mTOR pathway, but inhibiting the expression of p16 and GSK-3β. Meanwhile, oxidative stress-induced BMSC apoptosis was also significantly attenuated by the same protocol pretreatment with a decreased ratio of Bax/Bcl-2 and cleaved caspase-9/3 expression. Moreover, after the identification of the optimal protocol of H2O2 precondition in vitro, the migration and tissue engraftment of transfused BMSCs with H2O2 preconditioning were dramatically increased into the wound site as compared to the un-preconditioned BMSCs. The increased microvessel density and the speedy closure of the wounds were observed after the transfusion of H2O2-preconditioned BMSCs. Conclusions The findings suggested that 50 μM H2O2 pretreated for 12 h is the optimal precondition for the transplantation of BMSCs, which gives a considerable insight that this protocol may be served as a promising candidate for improving the therapeutic potential of BMSCs for wound healing.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5133-5133
Author(s):  
Jun Ren ◽  
Hanfang Jiang ◽  
Lijun Di ◽  
Guohong Song

Abstract Background and Aim: Bone marrow stem cells can differentiate into mature hepatocytes in vitro and in vivo. Moreover, recent study shown bone marrow mesenchymal stem cells (MSCs) are the most potent component in hepatic differentiation, suggesting that the transplantation of MSCs is a promising treatment for liver disease. However, little information is available about the therapeutic potential of MSCs transplantation in cases of hepatic cell carcinoma (HCC). Here, we transplanted bone marrow-derived MSCs to testify their effects in a murine model of orthotopic HCC. Methods:MSCs were obtained from tow male strains of β-galactosidase (β-gal) transgenic mouse(Rosa 26) and BALB/c mouse. MSCs were injected into tumor in BALB/c femal murine models of orthotopic HCC. Tumor growths were assessed by MRI on 7 days and survival rates were observed. When mouse was dying, the liver was removed from each treated mouse and evaluated by x-gal staining, and immunohistochemisty as well. Results: MSCs transplantation increased the survival of hepatocellular carcinoma-bearing mice(25.5±4.5days verus 21.3±1.7days, p=0.025) and decreased tumor diameter slightly (7.7±2.9mm versus 9.4±2.8mm, p=0.284). MSCs transplanted directly into the tumor and/ or normal hepatic parenchyma in the same liver lobe localized mainly at the border between the tumor cells and normal liver parenchyma, induced a large area of coagulative necrosis in the tumor bed. Some engrafted MSCs were positive for albumin. There are in the carcinoma bearing BALB/c mice with MSCs implanted, whether MSCs from BALB/c mice or from Rosa 26 transgenic mice. Conclusion: Our results suggest that the therapeutical effects of MSCs might be mediated not only by their differentiation into hepatocyte, but also mainly by they possess intrinsic antineoplastic properties.


Sign in / Sign up

Export Citation Format

Share Document