scholarly journals In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Masoumeh Zarei-Kheirabadi ◽  
Mahdi Hesaraki ◽  
Sahar Kiani ◽  
Hossein Baharvand

Abstract Background Spinal cord injury (SCI) results in glial scar formation and irreversible neuronal loss, which finally leads to functional impairments and long-term disability. Our previous studies have demonstrated that the ectopic expression of Zfp521 reprograms fibroblasts and astrocytes into induced neural stem cells (iNSCs). However, it remains unclear whether treatment with Zfp521 also affects endogenous astrocytes, thus promoting further functional recovery following SCI. Methods Rat astrocytes were transdifferentiated into neural stem cells in vitro by ZFP521 or Sox2. Then, ZFP521 was applied to the spinal cord injury site of a rat. Transduction, real-time PCR, immunohistofluorescence, and function assessments were performed at 6 weeks post-transduction to evaluate improvement and in vivo lineage reprogramming of astrocytes. Results Here, we show that Zfp521 is more efficient in reprogramming cultured astrocytes compared with Sox2. In the injured spinal cord of an adult rat, resident astrocytes can be reprogrammed into neurons through a progenitor stage by Zfp521. Importantly, this treatment improves the functional abilities of the rats as evaluated by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and further by calculation of its subscores. There was enhanced locomotor activity in the hind limbs, step length, toe spread, foot length, and paw area. In addition, motor evoked potential recordings demonstrated the functional integrity of the spinal cord. Conclusions These results have indicated that the generation of iNSCs or neurons from endogenous astrocytes by in situ reprogramming might be a potential strategy for SCI repair. Graphical abstract

2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Qingqi Meng ◽  
Zhiteng Chen ◽  
Qingyuan Gao ◽  
Liqiong Hu ◽  
Qilong Li ◽  
...  

Background. Neurodegenerative diseases, such as Alzheimer’s disease, and traumatic brain and spinal cord injury (SCI) are prevalent in clinical practice. Inhibition of hyperactive inflammation and proliferation of endogenous neural stem cells (NSCs) is a promising treatment strategy for SCI. Our previous studies demonstrated the beneficial effects of rosiglitazone (Rosi) on SCI, but its roles in inflammation inhibition and proliferation of NSCs are unknown. Methods. SCI in a rat model was established, and the effects of Rosi on motor functions were assessed. The effects of Rosi on NSC proliferation and the underlying mechanisms were explored in details. Results. We showed that Rosi ameliorated impairment of moto functions in SCI rats, inhibited inflammation, and promoted proliferation of NSCs in vivo. Rosi increased ATP production through enhancing glycolysis but not oxidative phosphorylation. Rosi reduced mitophagy by downregulating PTEN-induced putative kinase 1 (PINK1) transcription to promote NSC proliferation, which was effectively reversed by an overexpression of PINK1 in vitro. Through KEGG analysis and experimental validations, we discovered that Rosi reduced the expression of forkhead box protein O1 (FOXO1) which was a critical transcription factor of PINK1. Three FOXO1 consensus sequences (FCSs) were found in the first intron of the PINK1 gene, which could be potentially binding to FOXO1. The proximal FCS (chr 5: 156680169–156680185) from the translation start site exerted a more significant influence on PINK1 transcription than the other two FCSs. The overexpression of FOXO1 entirely relieved the inhibition of PINK1 transcription in the presence of Rosi. Conclusions. Besides inflammation inhibition, Rosi suppressed mitophagy by reducing FOXO1 to decrease the transcription of PINK1, which played a pivotal role in accelerating the NSC proliferation.


2005 ◽  
Vol 19 (13) ◽  
pp. 1839-1841 ◽  
Author(s):  
Seiji Okada ◽  
Ken Ishii ◽  
Junichi Yamane ◽  
Akio Iwanami ◽  
Takeshi Ikegami ◽  
...  

2022 ◽  
Author(s):  
Jianwu Dai ◽  
Yunlong Zou ◽  
Yanyun Yin ◽  
Zhifeng Xiao ◽  
Yannan Zhao ◽  
...  

Numerous studies have indicated that microgravity induces various changes in the cellular functions of neural stem cells (NSCs), and the use of microgravity to culture tissue engineering seed cells for...


Sign in / Sign up

Export Citation Format

Share Document