scholarly journals Virus persistence in pig herds led to successive reassortment events between swine and human influenza A viruses, resulting in the emergence of a novel triple-reassortant swine influenza virus

2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Amélie Chastagner ◽  
Emilie Bonin ◽  
Christelle Fablet ◽  
Stéphane Quéguiner ◽  
Edouard Hirchaud ◽  
...  

Abstract This report describes the detection of a triple reassortant swine influenza A virus of H1avN2 subtype. It evolved from an avian-like swine H1avN1 that first acquired the N2 segment from a seasonal H3N2, then the M segment from a 2009 pandemic H1N1, in two reassortments estimated to have occurred 10 years apart. This study illustrates how recurrent influenza infections increase the co-infection risk and facilitate evolutionary jumps by successive gene exchanges. It recalls the importance of appropriate biosecurity measures inside holdings to limit virus persistence and interspecies transmissions, which both contribute to the emergence of new potentially zoonotic viruses.

2015 ◽  
Vol 89 (10) ◽  
pp. 5651-5667 ◽  
Author(s):  
Daniel Dlugolenski ◽  
Les Jones ◽  
Elizabeth Howerth ◽  
David Wentworth ◽  
S. Mark Tompkins ◽  
...  

ABSTRACTSwine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression.IMPORTANCEInfluenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Frank Y. K. Wong ◽  
Celeste Donato ◽  
Yi-Mo Deng ◽  
Don Teng ◽  
Naomi Komadina ◽  
...  

ABSTRACTGlobal swine populations infected with influenza A viruses pose a persistent pandemic risk. With the exception of a few countries, our understanding of the genetic diversity of swine influenza viruses is limited, hampering control measures and pandemic risk assessment. Here we report the genomic characteristics and evolutionary history of influenza A viruses isolated in Australia from 2012 to 2016 from two geographically isolated swine populations in the states of Queensland and Western Australia. Phylogenetic analysis with an expansive human and swine influenza virus data set comprising >40,000 sequences sampled globally revealed evidence of the pervasive introduction and long-term establishment of gene segments derived from several human influenza viruses of past seasons, including the H1N1/1977, H1N1/1995, H3N2/1968, and H3N2/2003, and the H1N1 2009 pandemic (H1N1pdm09) influenza A viruses, and a genotype that contained gene segments derived from the past three pandemics (1968, reemerged 1977, and 2009). Of the six human-derived gene lineages, only one, comprising two viruses isolated in Queensland during 2012, was closely related to swine viruses detected from other regions, indicating a previously undetected circulation of Australian swine lineages for approximately 3 to 44 years. Although the date of introduction of these lineages into Australian swine populations could not be accurately ascertained, we found evidence of sustained transmission of two lineages in swine from 2012 to 2016. The continued detection of human-origin influenza virus lineages in swine over several decades with little or unpredictable antigenic drift indicates that isolated swine populations can act as antigenic archives of human influenza viruses, raising the risk of reemergence in humans when sufficient susceptible populations arise.IMPORTANCEWe describe the evolutionary origins and antigenic properties of influenza A viruses isolated from two separate Australian swine populations from 2012 to 2016, showing that these viruses are distinct from each other and from those isolated from swine globally. Whole-genome sequencing of virus isolates revealed a high genotypic diversity that had been generated exclusively through the introduction and establishment of human influenza viruses that circulated in past seasons. We detected six reassortants with gene segments derived from human H1N1/H1N1pdm09 and various human H3N2 viruses that circulated during various periods since 1968. We also found that these swine viruses were not related to swine viruses collected elsewhere, indicating independent circulation. The detection of unique lineages and genotypes in Australia suggests that isolated swine populations that are sufficiently large can sustain influenza virus for extensive periods; we show direct evidence of a sustained transmission for at least 4 years between 2012 and 2016.


2021 ◽  
Author(s):  
Wen Su ◽  
Rhodri Harfoot ◽  
Yvonne Su ◽  
Jennifer DeBeauchamp ◽  
Udayan Joseph ◽  
...  

Abstract The emergence of a pandemic influenza virus may be better anticipated if we better understand the evolutionary steps taken by avian influenza viruses as they adapt to mammals. We used ancestral sequence reconstruction to resurrect viruses representing initial adaptive stages of the European avian-like H1N1 virus as it transitioned from avian to swine hosts. We demonstrate that efficient transmissibility in pigs was gained through stepwise adaptation after 1983. These time-dependent adaptations resulted in changes in hemagglutinin receptor binding specificity and increased viral polymerase activity. An NP-R351K mutation under strong positive selection increased the transmissibility of a reconstructed virus. The stepwise-adaptation of a wholly avian influenza virus to a mammalian host suggests a window where targeted intervention may have highest impact. Successful intervention will, however, require strategic coordination of surveillance and risk assessment activities to identify these adapting viruses and guide pandemic preparedness resources.


2010 ◽  
Vol 41 (5) ◽  
pp. 74 ◽  
Author(s):  
Núria Busquets ◽  
Joaquim Segalés ◽  
Lorena Córdoba ◽  
Tufaria Mussá ◽  
Elisa Crisci ◽  
...  

2019 ◽  
Vol 71 (3) ◽  
pp. 622-629 ◽  
Author(s):  
Laura K Borkenhagen ◽  
Guo-Lin Wang ◽  
Ryan A Simmons ◽  
Zhen-Qiang Bi ◽  
Bing Lu ◽  
...  

Abstract Background China is thought to be a hotspot for zoonotic influenza virus emergence, yet there have been few prospective studies examining the occupational risks of such infections. Methods We present the first 2 years of data collected from a 5-year, prospective, cohort study of swine-exposed and -unexposed participants at 6 swine farms in China. We conducted serological and virological surveillance to examine evidence for swine influenza A virus infection in humans. Results Of the 658 participants (521 swine-exposed and 137 swine-unexposed), 207 (31.5%) seroconverted against at least 1 swine influenza virus subtype (swine H1N1 or H3N2). Swine-exposed participants’ microneutralization titers, especially those enrolled at confined animal feeding operations (CAFOs), were higher against the swine H1N1 virus than were other participants at 12 and 24 months. Despite elevated titers, among the 187 study subjects for whom we had complete follow-up, participants working at swine CAFOs had significantly greater odds of seroconverting against both the swine H1N1 (odds ratio [OR] 19.16, 95% confidence interval [CI] 3.55–358.65) and swine H3N2 (OR 2.97, 95% CI 1.16–8.01) viruses, compared to unexposed and non-CAFO swine workers with less intense swine exposure. Conclusions While some of the observed increased risk against swine viruses may have been explained by exposure to human influenza strains, study data suggest that even with elevated preexisting antibodies, swine-exposed workers were at high risk of infection with enzootic swine influenza A viruses.


2020 ◽  
Author(s):  
Helen E. Everett ◽  
Pauline M. van Diemen ◽  
Mario Aramouni ◽  
Andrew Ramsay ◽  
Vivien J. Coward ◽  
...  

Swine influenza A virus (swIAV) infection causes substantial economic loss and disease burden in humans and animals. The 2009 pandemic H1N1 (pH1N1) influenza A virus is now endemic in both populations. In this study we evaluated the efficacy of different vaccines in reducing nasal shedding in pigs following pH1N1 virus challenge. We also assessed transmission from immunized and challenged to naive, directly in-contact pigs. Pigs were immunised with either adjuvanted, whole inactivated virus (WIV) vaccines or viral vectored (ChAdOx1 and MVA) vaccines expressing either the homologous or heterologous influenza A virus hemagglutinin (HA) glycoprotein as well as an influenza viral pseudotype (S-FLU) vaccine expressing heterologous HA. Only two vaccines containing homologous HA, which also induced high hemagglutination inhibitory antibody titers, significantly reduced virus shedding in challenged animals. Nevertheless, virus transmission from challenged to naive, in-contact animals occurred in all groups, although was delayed in groups of vaccinated animals with reduced virus shedding. IMPORTANCE This study was designed to determine whether vaccination of pigs with conventional, WIV or viral-vectored vaccines reduces pH1N1 swine influenza virus shedding following challenge and can prevent transmission to naive in-contact animals. Even when viral shedding was significantly reduced following challenge, infection was transmissible to susceptible co-housed recipients. This knowledge is important to inform disease surveillance and control strategies, and to determine the vaccine coverage required in a population, thereby defining disease moderation or herd protection. WIV or viral-vectored vaccines homologous to the challenge strain significantly reduced virus shedding from directly infected pigs, but vaccination did not completely prevent transmission to co-housed naive pigs.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Nicola S Lewis ◽  
Colin A Russell ◽  
Pinky Langat ◽  
Tavis K Anderson ◽  
Kathryn Berger ◽  
...  

Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans.


2009 ◽  
Vol 83 (19) ◽  
pp. 10198-10210 ◽  
Author(s):  
Aleksandar Masic ◽  
Jayaum S. Booth ◽  
George K. Mutwiri ◽  
Lorne A. Babiuk ◽  
Yan Zhou

ABSTRACT Influenza A viruses cause significant morbidity in swine, resulting in a substantial economic burden. Swine influenza virus (SIV) infection also poses important human public health concerns. Vaccination is the primary method for the prevention of influenza virus infection. Previously, we generated two elastase-dependent mutant SIVs derived from A/Sw/Saskatchewan/18789/02(H1N1): A/Sw/Sk-R345V (R345V) and A/Sw/Sk-R345A (R345A). These two viruses are highly attenuated in pigs, making them good candidates for a live-virus vaccine. In this study, the immunogenicity and the ability of these candidates to protect against SIV infection were evaluated in pigs. We report that intratracheally administrated R345V and R345A induced antigen-specific humoral and cell-mediated immunity characterized by increased production of immunoglobulin G (IgG) and IgA antibodies in the serum and in bronchoalveolar lavage fluid, high hemagglutination inhibition titers in serum, an enhanced level of lymphocyte proliferation, and higher numbers of gamma interferon-secreting cells at the site of infection. Based on the immunogenicity results, the R345V virus was further tested in a protection trial in which pigs were vaccinated twice with R345V and then challenged with homologous A/Sw/Saskatchewan/18789/02, H1N1 antigenic variant A/Sw/Indiana/1726/88 or heterologous subtypic H3N2 A/Sw/Texas/4199-2/9/98. Our data showed that two vaccinations with R345V provided pigs with complete protection from homologous H1N1 SIV infection and partial protection from heterologous subtypic H3N2 SIV infection. This protection was characterized by significantly reduced macroscopic and microscopic lung lesions, lower virus titers from the respiratory tract, and lower levels of proinflammatory cytokines. Thus, elastase-dependent SIV mutants can be used as live-virus vaccines against swine influenza in pigs.


1994 ◽  
Vol 68 (4) ◽  
pp. 2051-2058 ◽  
Author(s):  
D E Wentworth ◽  
B L Thompson ◽  
X Xu ◽  
H L Regnery ◽  
A J Cooley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document