swine influenza virus
Recently Published Documents


TOTAL DOCUMENTS

450
(FIVE YEARS 73)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuhang Sun ◽  
Jinlong Zhang ◽  
Zixuan Liu ◽  
Ying Zhang ◽  
Kehe Huang

Porcine circovirus type 2 (PCV2) is the primary pathogen of porcine circovirus diseases and porcine circovirus associated diseases. Immunization with a vaccine is considered an effective measure to control these diseases. However, it is still unknown whether PCV2 vaccines have protective immune responses on the animals infected with swine influenza virus (SIV), a pandemic virus in swine herds. In this study, we first compared the effects of 2 different PCV2 vaccines on normal mice and SIV-infected mice, respectively. The results showed that these two vaccines had protective immune responses in normal mice, and the subunit vaccine (vaccine S) had better effects. However, the inactivated vaccine (vaccine I) instead of vaccine S exhibited more immune responses in the SIV-infected mice. SIV infection significantly decreased the immune responses of vaccine S in varying aspects including decreased PCV2 antibody levels and increased PCV2 replication. Mechanistically, further studies showed that SIV infection increased IL-10 expression and M2 macrophage percentage, but decreased TNF-α expression and M1 macrophage percentage in the mice immunized with vaccine S; on the contrary, macrophage depleting by using clodronate-containing liposomes significantly alleviated the SIV infection-induced decrease in the protective immune responses of vaccine S against PCV2. This study indicates that SIV infection decreases the protective immune responses of vaccine S against PCV2. The macrophage polarization induced by SIV infection might facilitate decreased immune responses to vaccine S, which provides new insight into vaccine evaluation and a reference for the analysis of immunization failure.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1527
Author(s):  
Andreja Jungić ◽  
Vladimir Savić ◽  
Josip Madić ◽  
Ljubo Barbić ◽  
Besi Roić ◽  
...  

In a total of 1536 blood serum samples analysed by ELISA, antibodies for IAV nucleoprotein (NP) were detected in 30.3%. Results from HI show that the most common subtype of swIAV in the Croatian pig population was H1N1 (44.6%), followed by H3N2 (42.7%) and H1N2 (26.3%). Antibodies to at least one subtype were detected in 62.19% of blood serum samples. Detection of swIAV antigen was performed by IHC and detected in 8 of 28 lung samples collected post-mortem. The matrix (M) gene was detected in nine of one hundred and forty-two lung tissue samples and in seven of twenty-nine nasopharyngeal swabs. Phylogenetic analysis of amplified HA and NA gene fragments in Croatian isolates suggests the presence of swIAV H1avN1av.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiphany Chrun ◽  
Emmanuel A. Maze ◽  
Eleni Vatzia ◽  
Veronica Martini ◽  
Basudev Paudyal ◽  
...  

The porcine respiratory disease complex (PRDC) is responsible for significant economic losses in the pig industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus are major viral contributors to PRDC. Vaccines are cost-effective measures for controlling PRRS, however, their efficacy in the context of co-infections has been poorly investigated. In this study, we aimed to determine the effect of PRRSV-2 and swine influenza H3N2 virus co-infection on the efficacy of PRRSV modified live virus (MLV) vaccination, which is widely used in the field. Following simultaneous challenge with contemporary PRRSV-2 and H3N2 field isolates, we found that the protective effect of PRRS MLV vaccination on clinical disease and pathology was abrogated, although viral load was unaffected and antibody responses were enhanced. In contrast, co-infection in non-immunized animals reduced PRRSV-2 viremia and H3N2 virus load in the upper respiratory tract and potentiated T cell responses against both PRRSV-2 and H3N2 in the lung. Further analysis suggested that an upregulation of inhibitory cytokines gene expression in the lungs of vaccinated pigs may have influenced responses to H3N2 and PRRSV-2. These findings provide important insights into the effect of viral co-infections on PRRS vaccine efficacy that may help identify more effective vaccination strategies against PRDC in the field.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lok R. Joshi ◽  
David Knudsen ◽  
Pablo Piñeyro ◽  
Santosh Dhakal ◽  
Gourapura J. Renukaradhya ◽  
...  

Swine influenza is a highly contagious respiratory disease of pigs caused by influenza A viruses (IAV-S). IAV-S causes significant economic losses to the swine industry and poses challenges to public health given its zoonotic potential. Thus effective IAV-S vaccines are needed and highly desirable and would benefit both animal and human health. Here, we developed two recombinant orf viruses, expressing the hemagglutinin (HA) gene (OV-HA) or the HA and the nucleoprotein (NP) genes of IAV-S (OV-HA-NP). The immunogenicity and protective efficacy of these two recombinant viruses were evaluated in pigs. Both OV-HA and OV-HA-NP recombinants elicited robust virus neutralizing antibody response in pigs, with higher levels of neutralizing antibodies (NA) being detected in OV-HA-NP-immunized animals pre-challenge infection. Although both recombinant viruses elicited IAV-S-specific T-cell responses, the frequency of IAV-S-specific proliferating CD8+ T cells upon re-stimulation was higher in OV-HA-NP-immunized animals than in the OV-HA group. Importantly, IgG1/IgG2 isotype ELISAs revealed that immunization with OV-HA induced Th2-biased immune responses, whereas immunization with OV-HA-NP virus resulted in a Th1-biased immune response. While pigs immunized with either OV-HA or OV-HA-NP were protected when compared to non-immunized controls, immunization with OV-HA-NP resulted in incremental protection against challenge infection as evidenced by a reduced secondary antibody response (NA and HI antibodies) following IAV-S challenge and reduced virus shedding in nasal secretions (lower viral RNA loads and frequency of animals shedding viral RNA and infectious virus), when compared to animals in the OV-HA group. Interestingly, broader cross neutralization activity was also observed in serum of OV-HA-NP-immunized animals against a panel of contemporary IAV-S isolates representing the major genetic clades circulating in swine. This study demonstrates the potential of ORFV-based vector for control of swine influenza virus in swine.


2021 ◽  
Author(s):  
Maryam Shojaei ◽  
Amir Shamshirian ◽  
James Monkman ◽  
Laura Grice ◽  
Minh Tran ◽  
...  

Background. Robust biomarkers that predict disease outcomes amongst COVID19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness. Methods. We conducted a multi cohort observational study to investigate the biology and the prognostic role of interferon alpha inducible protein 27 (IFI27) in COVID19 patients. Findings. We show that IFI27 is expressed in the respiratory tract of COVID19 patients and elevated IFI27 expression is associated with the presence of a high viral load. We further demonstrate that systemic host response, as measured by blood IFI27 expression, is associated with COVID19 severity. For clinical outcome prediction (e.g. respiratory failure), IFI27 expression displays a high positive (0.83) and negative (0.95) predictive value, outperforming all other known predictors of COVID19 severity. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 swine influenza virus infection, IFI27 like genes were highly upregulated in the blood samples of severely infected patients. Interpretation. These data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet to be discovered respiratory virus.


2021 ◽  
Author(s):  
Pia Ryt-Hansen ◽  
Henriette Guldberg Nielsen ◽  
Simon Smed Sørensen ◽  
Inge Larsen ◽  
Charlotte Sonne Kristensen ◽  
...  

Abstract Along with an expanding global swine production, the commercial housing and management of swine herds, provide an optimal environment for constant circulation of swine influenza virus (swIAV), thereby challenging farmers and veterinarian in determining optimal control measures. The aim of this study was to investigate the role of gilts in the swIAV transmission dynamics, and to evaluate the impact of different control measures such as quarantine and gilt vaccination. The study was conducted as a cross-sectional study in ten Danish sow herds, including five swIAV vaccinated and five unvaccinated herds. Blood- and nasal swab samples of gilts, first parity sows, and piglets were collected in different stable units of the production system and analyzed for the presence of swIAV and swIAV antibodies. Associations between the detection of swIAV, seroprevalence, antibody levels, quarantine measures and vaccination strategy were thereafter investigated to identify possible risk factors for swIAV introductions and persistence within the herds.Nine of the ten herds had gilts or litters of first parity sows testing positive for swIAV, and swIAV was detected in both the quarantine, mating- and farrowing unit. The seroprevalence were generally higher in the vaccinated herds, but swIAV was still present in nasal swabs from both gilts and piglets in these herds. Notably, the results revealed that having positive gilts in the end of the quarantine increased the risk of having positive one-week-old litters in the farrowing unit by 2.5 times. These results underline that gilts are important contributors to the continuous circulation of swIAV. Additionally, the recorded vaccination schedules along with quarantine and biosecurity measures were far from optimal emphasizing a needed focus on these factors if control of pathogens such as swIAV is desired.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2087
Author(s):  
Álvaro López-Valiñas ◽  
Marta Sisteré-Oró ◽  
Sergi López-Serrano ◽  
Laura Baioni ◽  
Ayub Darji ◽  
...  

Influenza viruses represent a continuous threat to both animal and human health. The 2009 H1N1 A influenza pandemic highlighted the importance of a swine host in the adaptation of influenza viruses to humans. Nowadays, one of the most extended strategies used to control swine influenza viruses (SIVs) is the trivalent vaccine application, whose formulation contains the most frequently circulating SIV subtypes H1N1, H1N2, and H3N2. These vaccines do not provide full protection against the virus, allowing its replication, evolution, and adaptation. To better understand the main mechanisms that shape viral evolution, here, the SIV intra-host diversity was analyzed in samples collected from both vaccinated and nonvaccinated animals challenged with the H1N1 influenza A virus. Twenty-eight whole SIV genomes were obtained by next-generation sequencing, and differences in nucleotide variants between groups were established. Substitutions were allocated along all influenza genetic segments, while the most relevant nonsynonymous substitutions were allocated in the NS1 protein on samples collected from vaccinated animals, suggesting that SIV is continuously evolving despite vaccine application. Moreover, new viral variants were found in both vaccinated and nonvaccinated pigs, showing relevant substitutions in the HA, NA, and NP proteins, which may increase viral fitness under field conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zheng Kou ◽  
Junjie Li ◽  
Xinyue Fan ◽  
Saeed Kosari ◽  
Xiaoli Qiang

Swine influenza viruses (SIVs) can unforeseeably cross the species barriers and directly infect humans, which pose huge challenges for public health and trigger pandemic risk at irregular intervals. Computational tools are needed to predict infection phenotype and early pandemic risk of SIVs. For this purpose, we propose a feature representation algorithm to predict cross-species infection of SIVs. We built a high-quality dataset of 1902 viruses. A feature representation learning scheme was applied to learn feature representations from 64 well-trained random forest models with multiple feature descriptors of mutant amino acid in the viral proteins, including compositional information, position-specific information, and physicochemical properties. Class and probabilistic information were integrated into the feature representations, and redundant features were removed by feature space optimization. High performance was achieved using 20 informative features and 22 probabilistic information. The proposed method will facilitate SIV characterization of transmission phenotype.


2021 ◽  
Vol 10 (39) ◽  
Author(s):  
Nailya G. Klivleyeva ◽  
Nuray S. Ongarbayeva ◽  
Ilya S. Korotetskiy ◽  
Tatiana I. Glebova ◽  
Nurbol T. Saktaganov ◽  
...  

Here, we report the coding-complete genome sequence of a clinical sample of influenza virus obtained from a pig at a livestock farm in Karaganda, Central Kazakhstan, during a pig study in 2020. Isolate A/Swine/Karaganda/04/2020 (H1N1) belongs to clade 1A.3.2.2 lineage 1A, which includes the 2009 H1N1 pandemic strains.


Sign in / Sign up

Export Citation Format

Share Document