virus persistence
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 35)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Vlad Petrovan ◽  
Anusyah Rathakrishnan ◽  
Muneeb Islam ◽  
Lynnette C. Goatley ◽  
Katy Moffat ◽  
...  

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress towards vaccine development. Previously, the DP148R gene was deleted from the genome of genotype I virulent Benin 97/1 isolate. This virus, BeninΔDP148R, induced transient moderate clinical signs after immunization and high levels of protection against challenge. However, the BeninΔDP148R virus and genome persisted in blood over a prolonged period. In the current study deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R genome was shown not to reduce virus replication in macrophages in vitro. However, deletion of EP402R dramatically reduced the period of infectious virus persistence in blood in immunized pigs from 28 to 14 days and virus genome from 59 to 14 days, whilst maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus and no viremia or clinical signs were observed post-immunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and did not reduce the period of virus persistence in blood. These results show that EP402R and EP153R have a synergistic role in reducing clinical signs and levels of virus in blood. Importance: African swine fever virus (ASFV) causes a disease of domestic pigs and wild boar which results in death of almost all infected animals. The disease has a high economic impact, and no vaccine is available. We investigated the role of two ASFV proteins, called EP402R and EP153R, in determining the levels and length of time virus persists in blood from infected pigs. EP402R causes ASFV particles and infected cells to bind to red blood cells. Deletion of the EP402R gene dramatically reduced virus persistence in blood but did not reduce the level of virus. Deletion of the EP153R alone did not reduce the period or level of virus persistence in blood. However, deleting both EP153R and EP402R resulted in undetectable levels of virus in blood and no clinical signs showing the proteins act synergistically. Importantly the infected pigs were protected following infection with the wildtype virus that kills pigs.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1751
Author(s):  
Alexander O. Pasternak ◽  
Ben Berkhout

Antiretroviral therapy (ART) suppresses HIV-1 replication but does not eradicate the virus. Persistence of HIV-1 latent reservoirs in ART-treated individuals is considered the main obstacle to achieving an HIV-1 cure. However, these HIV-1 reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. HIV-1 latency is regulated at the transcriptional and at multiple post-transcriptional levels. Here, we review recent insights into the possible contribution of viral RNA processing to the persistence of HIV-1 reservoirs, and discuss the clinical implications of persistence of viral RNA species in ART-treated individuals.


mBio ◽  
2021 ◽  
Author(s):  
Megan C. Mladinich ◽  
Jonas N. Conde ◽  
William R. Schutt ◽  
Sook-Young Sohn ◽  
Erich R. Mackow

Our findings demonstrate that CCL5 is required for ZIKV to persistently infect human brain ECs that normally protect neuronal compartments. We demonstrate that ZIKV-elicited CCL5 secretion directs autocrine hBMEC activation of ERK1/2 survival pathways via CCR3/CCR5, and inhibiting CCL5/CCR3/CCR5 responses prevented ZIKV persistence and spread.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0252905
Author(s):  
Jessica G. Shantha ◽  
Ian Crozier ◽  
Colleen S. Kraft ◽  
Donald G. Grant ◽  
Augustine Goba ◽  
...  

Background Following the West African Ebola virus disease (EVD) outbreak of 2013–2016 and more recent EVD outbreaks in the Democratic Republic of Congo, thousands of EVD survivors are at-risk for sequelae including uveitis, which can lead to unremitting inflammation and vision loss from cataract. Because of the known risk of Ebola virus persistence in ocular fluid and the need to provide vision-restorative, safe cataract surgery, the Ebola Virus Persistence in Ocular Tissues and Fluids (EVICT) Study was implemented in Sierra Leone. During implementation of this multi-national study, challenges included regulatory approvals, mobilization, community engagement, infection prevention and control, and collaboration between multiple disciplines. In this report, we address the multifacted approach to address these challenges and the impact of implementation science research to address an urgent clinical subspecialty need in an outbreak setting. Methodology/Principal findings Given the patient care need to develop a protocol to evaluate ocular fluid for Ebola virus RNA persistence prior to cataract surgery, as well as protocols to provide reassurance to ophthalmologists caring for EVD survivors with cataracts, the EVICT study was designed and implemented through the work of the Ministry of Health, Sierra Leone National Eye Programme, and international partnerships. The EVICT study showed that all 50 patients who underwent ocular fluid sampling at 19 and 34 months, respectively, tested negative for Ebola virus RNA. Thirty-four patients underwent successful cataract surgery with visual acuity improvement. Here we describe the methodology for study implementation, challenges encountered, and key issues that impacted EVD vision care in the immediate aftermath of the EVD outbreak. Key aspects of the EVICT study included defining the pertinent questions and clinical need, partnership alignment with key stakeholders, community engagement with EVD survivor associations, in-country and international regulatory approvals, study site design for infection prevention and control, and thorough plans for EVD survivor follow-up care and monitoring. Challenges encountered included patient mobilization owing to transportation routes and distance of patients in rural districts. Strong in-country partnerships and multiple international organizations overcame these challenges so that lessons learned could be applied for future EVD outbreaks in West and Central Africa including EVD outbreaks that are ongoing in Guinea and Democratic Republic of Congo. Conclusions/Significance The EVICT Study showed that cataract surgery with a protocol-driven approach was safe and vision-restorative for EVD survivors, which provided guidance for EVD ophthalmic surgical care. Ophthalmologic care remains a key aspect of the public health response for EVD outbreaks but requires a meticulous, yet partnered approach with international and local in-country partners. Future efforts may build on this framework for clinical care and to improve our understanding of ophthalmic sequelae, develop treatment paradigms for EVD survivors, and strengthen vision health systems in resource-limited settings.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 855
Author(s):  
David J. Páez ◽  
Rachel L. Powers ◽  
Peng Jia ◽  
Natalia Ballesteros ◽  
Gael Kurath ◽  
...  

Environmental variation has important effects on host–pathogen interactions, affecting large-scale ecological processes such as the severity and frequency of epidemics. However, less is known about how the environment interacts with host immunity to modulate virus fitness within hosts. Here, we studied the interaction between host immune responses and water temperature on the long-term persistence of a model vertebrate virus, infectious hematopoietic necrosis virus (IHNV) in steelhead trout (Oncorhynchus mykiss). We first used cell culture methods to factor out strong host immune responses, allowing us to test the effect of temperature on viral replication. We found that 15 ∘C water temperature accelerated IHNV replication compared to the colder 10 and 8 ∘C temperatures. We then conducted in vivo experiments to quantify the effect of 6, 10, and 15 ∘C water temperatures on IHNV persistence over 8 months. Fish held at 15 and 10 ∘C were found to have higher prevalence of neutralizing antibodies compared to fish held at 6 ∘C. We found that IHNV persisted for a shorter time at warmer temperatures and resulted in an overall lower fish mortality compared to colder temperatures. These results support the hypothesis that temperature and host immune responses interact to modulate virus persistence within hosts. When immune responses were minimized (i.e., in vitro) virus replication was higher at warmer temperatures. However, with a full potential for host immune responses (i.e., in vivo experiments) longer virus persistence and higher long-term virulence was favored in colder temperatures. We also found that the viral RNA that persisted at later time points (179 and 270 days post-exposure) was mostly localized in the kidney and spleen tissues. These tissues are composed of hematopoietic cells that are favored targets of the virus. By partitioning the effect of temperature on host and pathogen responses, our results help to better understand environmental drivers of host–pathogen interactions within hosts, providing insights into potential host–pathogen responses to climate change.


2021 ◽  
Vol 000 (000) ◽  
pp. 000-000
Author(s):  
Wenqing Zhou ◽  
Jinzhuo Luo ◽  
Xiaohong Xie ◽  
Shangqing Yang ◽  
Dan Zhu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kerstin Renner ◽  
Tobias Schwittay ◽  
Sophia Chaabane ◽  
Johanna Gottschling ◽  
Christine Müller ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) can lead to pneumonia and hyperinflammation. Here we show a sensitive method to measure polyclonal T cell activation by downstream effects on responder cells like basophils, plasmacytoid dendritic cells, monocytes and neutrophils in whole blood. We report a clear T cell hyporeactivity in hospitalized COVID-19 patients that is pronounced in ventilated patients, associated with prolonged virus persistence and reversible with clinical recovery. COVID-19-induced T cell hyporeactivity is T cell extrinsic and caused by plasma components, independent of occasional immunosuppressive medication of the patients. Monocytes respond stronger in males than females and IL-2 partially restores T cell activation. Downstream markers of T cell hyporeactivity are also visible in fresh blood samples of ventilated patients. Based on our data we developed a score to predict fatal outcomes and identify patients that may benefit from strategies to overcome T cell hyporeactivity.


Sign in / Sign up

Export Citation Format

Share Document