scholarly journals Neddylation regulation of mitochondrial structure and functions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiyin Zhou ◽  
Yawen Zheng ◽  
Yi Sun

AbstractMitochondria are the powerhouse of a cell. The structure and function of mitochondria are precisely regulated by multiple signaling pathways. Neddylation, a post-translational modification, plays a crucial role in various cellular processes including cellular metabolism via modulating the activity, function and subcellular localization of its substrates. Recently, accumulated data demonstrated that neddylation is involved in regulation of morphology, trafficking and function of mitochondria. Mechanistic elucidation of how mitochondria is modulated by neddylation would further our understanding of mitochondrial regulation to a new level. In this review, we first briefly introduce mitochondria, then neddylation cascade, and known protein substrates subjected to neddylation modification. Next, we summarize current available data of how neddylation enzymes, its substrates (including cullins/Cullin-RING E3 ligases and non-cullins) and its inhibitor MLN4924 regulate the structure and function of mitochondria. Finally, we propose the future perspectives on this emerging and exciting field of mitochondrial research.

2019 ◽  
Vol 14 (5) ◽  
pp. 542-563 ◽  
Author(s):  
Jiansen Du ◽  
Lin Fu ◽  
Yingli Sui ◽  
Lingqiang Zhang

AbstractPost-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Ranjith K. Papareddy ◽  
Katalin Páldi ◽  
Subramanian Paulraj ◽  
Ping Kao ◽  
Stefan Lutzmayer ◽  
...  

Abstract Background Eukaryotic genomes are partitioned into euchromatic and heterochromatic domains to regulate gene expression and other fundamental cellular processes. However, chromatin is dynamic during growth and development and must be properly re-established after its decondensation. Small interfering RNAs (siRNAs) promote heterochromatin formation, but little is known about how chromatin regulates siRNA expression. Results We demonstrate that thousands of transposable elements (TEs) produce exceptionally high levels of siRNAs in Arabidopsis thaliana embryos. TEs generate siRNAs throughout embryogenesis according to two distinct patterns depending on whether they are located in euchromatic or heterochromatic regions of the genome. siRNA precursors are transcribed in embryos, and siRNAs are required to direct the re-establishment of DNA methylation on TEs from which they are derived in the new generation. Decondensed chromatin also permits the production of 24-nt siRNAs from heterochromatic TEs during post-embryogenesis, and siRNA production from bipartite-classified TEs is controlled by their chromatin states. Conclusions Decondensation of heterochromatin in response to developmental, and perhaps environmental, cues promotes the transcription and function of siRNAs in plants. Our results indicate that chromatin-mediated siRNA transcription provides a cell-autonomous homeostatic control mechanism to help reconstitute pre-existing chromatin states during growth and development including those that ensure silencing of TEs in the future germ line.


2021 ◽  
Vol 134 (16) ◽  
Author(s):  
Robert Mahen

ABSTRACT To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.


1998 ◽  
Vol 111 (3) ◽  
pp. 313-320 ◽  
Author(s):  
K.A. Johnson

Little is known of the molecular basis for the diversity of microtubule structure and function found within the eukaryotic flagellum. Antibodies that discriminate between tyrosinated alpha tubulin and post-translationally detyrosinated alpha tubulin were used to localize these complementary tubulin isoforms in flagella of the single-celled green alga Chlamydomonas reinhardtii. Immunofluorescence analysis of intact axonemes detected both isoforms along most of the lengths of flagella; however, each had a short distal zone rich in tyrosinated tubulin. Localizations on splayed axonemes revealed that the microtubules of the central-pair apparatus were rich in tyrosinated tubulin, while outer doublets contained a mixture of both isoforms. Immunoelectron analysis of individual outer doublets revealed that while tyrosinated tubulin was present in both A and B tubules, detyrosinated tubulin was largely confined to the wall of the B hemi-tubules. The absence of detyrosinated tubulin from the A tubules of the outer doublets and the microtubules of the central pair, both of which extend past the B hemi-tubules of the outer doublets in the flagellar tip, explained the appearance of a tyrosinated tubulin-rich distal zone on intact axonemes. Localizations performed on cells regenerating flagella revealed that flagellar assembly used tyrosinated tubulin; detyrosination of the B tubule occurred during later stages of regeneration, well after microtubule polymerization. The developmental timing of detyrosination, which occurs over a period during which the regrowing flagella begin to beat more effectively, suggests that post-translational modification of the B tubule surface may enhance dynein/B tubule interactions that power flagellar beating.


Author(s):  
Mark Lorch

This chapter examines proteins, the dominant proportion of cellular machinery, and the relationship between protein structure and function. The multitude of biological processes needed to keep cells functioning are managed in the organism or cell by a massive cohort of proteins, together known as the proteome. The twenty amino acids that make up the bulk of proteins produce the vast array of protein structures. However, amino acids alone do not provide quite enough chemical variety to complete all of the biochemical activity of a cell, so the chapter also explores post-translation modifications. It finishes by looking as some dynamic aspects of proteins, including enzyme kinetics and the protein folding problem.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1824 ◽  
Author(s):  
Brigitte Schönberger ◽  
Christoph Schaal ◽  
Richard Schäfer ◽  
Björn Voß

Tight regulation of cellular processes is key to the development of complex organisms but also vital for simpler ones. During evolution, different regulatory systems have emerged, among them RNA-based regulation that is carried out mainly by intramolecular and intermolecular RNA–RNA interactions. However, methods for the transcriptome-wide detection of these interactions were long unavailable. Recently, three publications described high-throughput methods to directly detect RNA duplexes in living cells. This promises to enable in-depth studies of RNA-based regulation and will narrow the gaps in our understanding of RNA structure and function. In this review, we highlight the benefits of these methods and their commonalities and differences and, in particular, point to methodological shortcomings that hamper their wider application. We conclude by presenting ideas for how to overcome these problems and commenting on the prospects we see in this area of research.


2021 ◽  
Vol 119 ◽  
pp. 140-154
Author(s):  
Angela Imere ◽  
Cosimo Ligorio ◽  
Marie O'Brien ◽  
Jason K.F. Wong ◽  
Marco Domingos ◽  
...  

2018 ◽  
Vol 15 (4) ◽  
pp. 290-298 ◽  
Author(s):  
Jianzhu Ma ◽  
Michael Ku Yu ◽  
Samson Fong ◽  
Keiichiro Ono ◽  
Eric Sage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document