ring e3 ligases
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haibin Zhou ◽  
Jianfeng Lu ◽  
Krishnapriya Chinnaswamy ◽  
Jeanne A. Stuckey ◽  
Liu Liu ◽  
...  

AbstractCullin-RING E3 ligases (CRLs) regulate the turnover of approximately 20% of mammalian cellular proteins. Neddylation of individual cullin proteins is essential for the activation of each CRL. We report herein the discovery of DI-1548 and DI-1859 as two potent, selective and covalent DCN1 inhibitors. These inhibitors selectively inhibit neddylation of cullin 3 in cells at low nanomolar concentrations and are 2–3 orders of magnitude more potent than our previously reported reversible DCN1 inhibitor. Mass spectrometric analysis and co-crystal structures reveal that these compounds employ a unique mechanism of covalent bond formation with DCN1. DI-1859 induces a robust increase of NRF2 protein, a CRL3 substrate, in mouse liver and effectively protects mice from acetaminophen-induced liver damage. Taken together, this study demonstrates the therapeutic potential of selective inhibition of cullin neddylation.


Author(s):  
Wenbin Gai ◽  
Zhiqiang Peng ◽  
Cui Hua Liu ◽  
Lingqiang Zhang ◽  
Hong Jiang

Developmental down-regulation protein 8 (NEDD8), expressed by neural progenitors, is a ubiquitin-like protein that conjugates to and regulates the biological function of its substrates. The main target of NEDD8 is cullin-RING E3 ligases. Upregulation of the neddylation pathway is closely associated with the progression of various tumors, and MLN4924, which inhibits NEDD8-activating enzyme (NAE), is a promising new antitumor compound for combination therapy. Here, we summarize the latest progress in anticancer strategies targeting the neddylation pathway and their combined applications, providing a theoretical reference for developing antitumor drugs and combination therapies.


2021 ◽  
Vol 67 ◽  
pp. 101-109
Author(s):  
Kheewoong Baek ◽  
Daniel C Scott ◽  
Brenda A Schulman
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiyin Zhou ◽  
Yawen Zheng ◽  
Yi Sun

AbstractMitochondria are the powerhouse of a cell. The structure and function of mitochondria are precisely regulated by multiple signaling pathways. Neddylation, a post-translational modification, plays a crucial role in various cellular processes including cellular metabolism via modulating the activity, function and subcellular localization of its substrates. Recently, accumulated data demonstrated that neddylation is involved in regulation of morphology, trafficking and function of mitochondria. Mechanistic elucidation of how mitochondria is modulated by neddylation would further our understanding of mitochondrial regulation to a new level. In this review, we first briefly introduce mitochondria, then neddylation cascade, and known protein substrates subjected to neddylation modification. Next, we summarize current available data of how neddylation enzymes, its substrates (including cullins/Cullin-RING E3 ligases and non-cullins) and its inhibitor MLN4924 regulate the structure and function of mitochondria. Finally, we propose the future perspectives on this emerging and exciting field of mitochondrial research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leo Kiss ◽  
Dean Clift ◽  
Nadine Renner ◽  
David Neuhaus ◽  
Leo C. James

AbstractAttachment of ubiquitin (Ub) to proteins is one of the most abundant and versatile of all posttranslational modifications and affects outcomes in essentially all physiological processes. RING E3 ligases target E2 Ub-conjugating enzymes to the substrate, resulting in its ubiquitination. However, the mechanism by which a ubiquitin chain is formed on the substrate remains elusive. Here we demonstrate how substrate binding can induce a specific RING topology that enables self-ubiquitination. By analyzing a catalytically trapped structure showing the initiation of TRIM21 RING-anchored ubiquitin chain elongation, and in combination with a kinetic study, we illuminate the chemical mechanism of ubiquitin conjugation. Moreover, biochemical and cellular experiments show that the topology found in the structure can be induced by substrate binding. Our results provide insights into ubiquitin chain formation on a structural, biochemical and cellular level with broad implications for targeted protein degradation.


Nature ◽  
2021 ◽  
Vol 590 (7847) ◽  
pp. 671-676
Author(s):  
Daniel Horn-Ghetko ◽  
David T. Krist ◽  
J. Rajan Prabu ◽  
Kheewoong Baek ◽  
Monique P. C. Mulder ◽  
...  

AbstractE3 ligases are typically classified by hallmark domains such as RING and RBR, which are thought to specify unique catalytic mechanisms of ubiquitin transfer to recruited substrates1,2. However, rather than functioning individually, many neddylated cullin–RING E3 ligases (CRLs) and RBR-type E3 ligases in the ARIH family—which together account for nearly half of all ubiquitin ligases in humans—form E3–E3 super-assemblies3–7. Here, by studying CRLs in the SKP1–CUL1–F-box (SCF) family, we show how neddylated SCF ligases and ARIH1 (an RBR-type E3 ligase) co-evolved to ubiquitylate diverse substrates presented on various F-box proteins. We developed activity-based chemical probes that enabled cryo-electron microscopy visualization of steps in E3–E3 ubiquitylation, initiating with ubiquitin linked to the E2 enzyme UBE2L3, then transferred to the catalytic cysteine of ARIH1, and culminating in ubiquitin linkage to a substrate bound to the SCF E3 ligase. The E3–E3 mechanism places the ubiquitin-linked active site of ARIH1 adjacent to substrates bound to F-box proteins (for example, substrates with folded structures or limited length) that are incompatible with previously described conventional RING E3-only mechanisms. The versatile E3–E3 super-assembly may therefore underlie widespread ubiquitylation.


Author(s):  
Guang Lu ◽  
Liming Wang ◽  
Jing Zhou ◽  
Wei Liu ◽  
Han-Ming Shen
Keyword(s):  

2020 ◽  
pp. mcp.RA120.002414
Author(s):  
Ryan J Lumpkin ◽  
Alla S Ahmad ◽  
Rachel Blake ◽  
Christopher J Condon ◽  
Elizabeth A. Komives

Cullin RING E3 Ligases (CRLs) ubiquitylate hundreds of important cellular substrates. Here we have assembled and purified the Ankyrin repeat and SOCS Box protein 9 CUL5 RBX2 Ligase (ASB9-CRL) in vitro and show how it ubiquitylates one of its substrates, CKB. CRLs occasionally collaborate with RING between RING E3 ligases (RBRLs) and indeed, mass spectrometry analysis showed that CKB is specifically ubiquitylated by the ASB9-CRL-ARIH2-UBE2L3 complex. Addition of other E2s such as UBE2R1 or UBE2D2 contribute to polyubiquitylation but do not alter the sites of CKB ubiquitylation. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis revealed that CUL5 neddylation allosterically exposes its ARIH2 binding site, promoting high affinity binding, and it also sequesters the NEDD8 E2 (UBE2F) binding site on RBX2. Once bound, ARIH2 helices near the Ariadne domain active site are exposed, presumably relieving its autoinhibition. These results allow us to propose a model of how neddylation activates ASB-CRLs to ubiquitylate their substrates.


2020 ◽  
Vol 21 (21) ◽  
pp. 7936
Author(s):  
Jordan Blondelle ◽  
Andrea Biju ◽  
Stephan Lange

The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin–proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.


2020 ◽  
Vol 39 (22) ◽  
Author(s):  
Christian Lips ◽  
Tobias Ritterhoff ◽  
Annika Weber ◽  
Maria K Janowska ◽  
Mandy Mustroph ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document