chromatin states
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 87)

H-INDEX

40
(FIVE YEARS 7)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Charles E. Breeze ◽  
Eric Haugen ◽  
Alex Reynolds ◽  
Andrew Teschendorff ◽  
Jenny van Dongen ◽  
...  

Abstract Background Genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) are known to preferentially co-locate to active regulatory elements in tissues and cell types relevant to disease aetiology. Further characterisation of associated cell type-specific regulation can broaden our understanding of how GWAS signals may contribute to disease risk. Results To gain insight into potential functional mechanisms underlying GWAS associations, we developed FORGE2 (https://forge2.altiusinstitute.org/), which is an updated version of the FORGE web tool. FORGE2 uses an expanded atlas of cell type-specific regulatory element annotations, including DNase I hotspots, five histone mark categories and 15 hidden Markov model (HMM) chromatin states, to identify tissue- and cell type-specific signals. An analysis of 3,604 GWAS from the NHGRI-EBI GWAS catalogue yielded at least one significant disease/trait-tissue association for 2,057 GWAS, including > 400 associations specific to epigenomic marks in immune tissues and cell types, > 30 associations specific to heart tissue, and > 60 associations specific to brain tissue, highlighting the key potential of tissue- and cell type-specific regulatory elements. Importantly, we demonstrate that FORGE2 analysis can separate previously observed accessible chromatin enrichments into different chromatin states, such as enhancers or active transcription start sites, providing a greater understanding of underlying regulatory mechanisms. Interestingly, tissue-specific enrichments for repressive chromatin states and histone marks were also detected, suggesting a role for tissue-specific repressed regions in GWAS-mediated disease aetiology. Conclusion In summary, we demonstrate that FORGE2 has the potential to uncover previously unreported disease-tissue associations and identify new candidate mechanisms. FORGE2 is a transparent, user-friendly web tool for the integrative analysis of loci discovered from GWAS.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Ha Vu ◽  
Jason Ernst

Abstract Background Genome-wide maps of chromatin marks such as histone modifications and open chromatin sites provide valuable information for annotating the non-coding genome, including identifying regulatory elements. Computational approaches such as ChromHMM have been applied to discover and annotate chromatin states defined by combinatorial and spatial patterns of chromatin marks within the same cell type. An alternative “stacked modeling” approach was previously suggested, where chromatin states are defined jointly from datasets of multiple cell types to produce a single universal genome annotation based on all datasets. Despite its potential benefits for applications that are not specific to one cell type, such an approach was previously applied only for small-scale specialized purposes. Large-scale applications of stacked modeling have previously posed scalability challenges. Results Using a version of ChromHMM enhanced for large-scale applications, we apply the stacked modeling approach to produce a universal chromatin state annotation of the human genome using over 1000 datasets from more than 100 cell types, with the learned model denoted as the full-stack model. The full-stack model states show distinct enrichments for external genomic annotations, which we use in characterizing each state. Compared to per-cell-type annotations, the full-stack annotations directly differentiate constitutive from cell type-specific activity and is more predictive of locations of external genomic annotations. Conclusions The full-stack ChromHMM model provides a universal chromatin state annotation of the genome and a unified global view of over 1000 datasets. We expect this to be a useful resource that complements existing per-cell-type annotations for studying the non-coding human genome.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Graham JM Hickey ◽  
Candice L Wike ◽  
Xichen Nie ◽  
Yixuan Guo ◽  
Mengyao Tan ◽  
...  

Vertebrate embryos achieve developmental competency during zygotic genome activation (ZGA) by establishing chromatin states that silence yet poise developmental genes for subsequent lineage-specific activation. Here, we reveal the order of chromatin states in establishing developmental gene poising in preZGA zebrafish embryos. Poising is established at promoters and enhancers that initially contain open/permissive chromatin with 'Placeholder' nucleosomes (bearing H2A.Z, H3K4me1, and H3K27ac), and DNA hypomethylation. Silencing is initiated by the recruitment of Polycomb Repressive Complex 1 (PRC1), and H2Aub1 deposition by catalytic Rnf2 during preZGA and ZGA stages. During postZGA, H2Aub1 enables Aebp2-containing PRC2 recruitment and H3K27me3 deposition. Notably, preventing H2Aub1 (via Rnf2 inhibition) eliminates recruitment of Aebp2-PRC2 and H3K27me3, and elicits transcriptional upregulation of certain developmental genes during ZGA. However, upregulation is independent of H3K27me3 - establishing H2Aub1 as the critical silencing modification at ZGA. Taken together, we reveal the logic and mechanism for establishing poised/silent developmental genes in early vertebrate embryos.


2021 ◽  
Author(s):  
Monica Canton ◽  
Silvia Farinati ◽  
Cristian Forestan ◽  
Justin Joseph ◽  
Claudio Bonghi ◽  
...  

Abstract BackgroundPerennial fruit trees display a perennial growth behaviour characterized by an annual cycling between growth and dormancy, with complex physiological features. Rosaceae fruit trees represent excellent models for studying not only the fruit growth/patterning, but also the progression of the reproductive cycle depending upon the impact of climate conditions. In addition, the current development of high‐throughput technologies is starting to have an important impact on Rosaceae tree research for investigating genome structure and function as well as (epi)genetic mechanisms involved in important developmental and environmental response processes during fruit tree growth. Among the epigenetic mechanisms, chromatin remodelling mediated by both histone modifications and other chromatin-related processes play a crucial role in gene modulation, controlling gene expression process. A very useful technique to investigate the chromatin states in plants and their dynamics is chromatin immunoprecipitation (ChIP), generally applied for studies on chromatin states and enrichment in post transcriptional modifications (PTMs) of histone proteins. Results Because peach is a model in Rosaceae family for studies in bud formation, dormancy and organ differentiation for climacteric fruits, in our work, we primarily established specific protocols for chromatin extraction and immunoprecipitation in reproductive tissues of peach Prunus persica. Subsequently focused our investigations on the role of two chromatin marks, namely trimethylation of histone H3 at lysine in position 4 (H3K4me3) and trimethylation of histone H3 at lysine 27 (H3K27me3) on modulating specific gene expression. Bud dormancy and fruit growth were investigated in a nectarine genotype called Fantasia as a model system. ConclusionsHere we presented general strategies to systematically optimize ChIP protocols for buds and mesocarp tissues and analyzed the correlation between gene expression and chromatin mark enrichment/depletion. Confirming like histone modifications are implicated in regulating bud dormancy progression and the core ripening genes.


Author(s):  
Wenhui Xie ◽  
Yilang Ke ◽  
Qinyi You ◽  
Jing Li ◽  
Lu Chen ◽  
...  

Objective: The impact of vascular aging on cardiovascular diseases has been extensively studied; however, little is known regarding the cellular and molecular mechanisms underlying age-related vascular aging in aortic cellular subpopulations. Approach and Results: Transcriptomes and transposase-accessible chromatin profiles from the aortas of 4-, 26-, and 86-week-old C57/BL6J mice were analyzed using single-cell RNA sequencing and assay for transposase-accessible chromatin sequencing. By integrating the heterogeneous transcriptome and chromatin accessibility data, we identified cell-specific TF (transcription factor) regulatory networks and open chromatin states. We also determined that aortic aging affects cell interactions, inflammation, cell type composition, dysregulation of transcriptional control, and chromatin accessibility. Endothelial cells 1 have higher gene set activity related to cellular senescence and aging than do endothelial cells 2. Moreover, construction of senescence trajectories shows that endothelial cell 1 and fibroblast senescence is associated with distinct TF open chromatin states and an mRNA expression model. Conclusions: Our data provide a system-wide model for transcriptional and epigenetic regulation during aortic aging at single-cell resolution.


2021 ◽  
Author(s):  
Bagdeser Akdogan‐Ozdilek ◽  
Katherine L Duval ◽  
Fanju W Meng ◽  
Patrick J Murphy ◽  
Mary G Goll
Keyword(s):  

2021 ◽  
Author(s):  
Bingjie Zhang ◽  
Avi Srivastava ◽  
Eleni Mimitou ◽  
Tim Stuart ◽  
Ivan Raimondi ◽  
...  

AbstractNew technologies that profile chromatin modifications at single-cell resolution offer enormous promise for functional genomic characterization. However, the sparsity of these measurements and the challenge of integrating multiple binding maps represent significant challenges. Here we introduce scCUT&Tag-pro, a multimodal assay for profiling protein-DNA interactions coupled with the abundance of surface proteins in single cells. In addition, we introduce scChromHMM, which integrates data from multiple experiments to infer and annotate chromatin states based on combinatorial histone modification patterns. We apply these tools to perform an integrated analysis across nine different molecular modalities in circulating human immune cells. We demonstrate how these two approaches can characterize dynamic changes in the function of individual genomic elements across both discrete cell states and continuous developmental trajectories, nominate associated motifs and regulators that establish chromatin states, and identify extensive and cell type-specific regulatory priming. Finally, we demonstrate how our integrated reference can serve as a scaffold to map and improve the interpretation of additional scCUT&Tag datasets.


Nature Aging ◽  
2021 ◽  
Author(s):  
Brenna S. McCauley ◽  
Luyang Sun ◽  
Ruofan Yu ◽  
Minjung Lee ◽  
Haiying Liu ◽  
...  

Science ◽  
2021 ◽  
Vol 373 (6552) ◽  
pp. 306-315
Author(s):  
Nazar Mashtalir ◽  
Hai T. Dao ◽  
Akshay Sankar ◽  
Hengyuan Liu ◽  
Aaron J. Corin ◽  
...  

Mammalian SWI/SNF (mSWI/SNF) adenosine triphosphate–dependent chromatin remodelers modulate genomic architecture and gene expression and are frequently mutated in disease. However, the specific chromatin features that govern their nucleosome binding and remodeling activities remain unknown. We subjected endogenously purified mSWI/SNF complexes and their constituent assembly modules to a diverse library of DNA-barcoded mononucleosomes, performing more than 25,000 binding and remodeling measurements. Here, we define histone modification-, variant-, and mutation-specific effects, alone and in combination, on mSWI/SNF activities and chromatin interactions. Further, we identify the combinatorial contributions of complex module components, reader domains, and nucleosome engagement properties to the localization of complexes to selectively permissive chromatin states. These findings uncover principles that shape the genomic binding and activity of a major chromatin remodeler complex family.


Sign in / Sign up

Export Citation Format

Share Document