viral survival
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 43 (1) ◽  
Author(s):  
Amanda K. Weaver ◽  
Jennifer R. Head ◽  
Carlos F. Gould ◽  
Elizabeth J. Carlton ◽  
Justin V. Remais

Emerging evidence supports a link between environmental factors—including air pollution and chemical exposures, climate, and the built environment—and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and coronavirus disease 2019 (COVID-19) susceptibility and severity. Climate, air pollution, and the built environment have long been recognized to influence viral respiratory infections, and studies have established similar associations with COVID-19 outcomes. More limited evidence links chemical exposures to COVID-19. Environmental factors were found to influence COVID-19 through four major interlinking mechanisms: increased risk of preexisting conditions associated with disease severity; immune system impairment; viral survival and transport; and behaviors that increase viral exposure. Both data and methodologic issues complicate the investigation of these relationships, including reliance on coarse COVID-19 surveillance data; gaps in mechanistic studies; and the predominance of ecological designs. We evaluate the strength of evidence for environment–COVID-19 relationships and discuss environmental actions that might simultaneously address the COVID-19 pandemic, environmental determinants of health, and health disparities. Expected final online publication date for the Annual Review of Public Health, Volume 43 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Tolulope Peter Saliu ◽  
Haruna I. Umar ◽  
Olawale Johnson Ogunsile ◽  
Micheal O. Okpara ◽  
Noriyuki Yanaka ◽  
...  

Abstract Background Since the index case was reported in China, COVID-19 has led to the death of at least 4 million people globally. Although there are some vaccine cocktails in circulation, the emergence of more virulent variants of SARS-CoV-2 may make the eradication of COVID-19 more difficult. Nsp16 is an S-adenosyl-L-Methionine-dependent methyltransferase that plays an important role in SARS-CoV-2 viral RNA cap formation—a crucial process that confers viral stability and prevents virus detection by cell innate immunity mechanisms. This unique property makes nsp16 a promising molecular target for COVID-19 drug design. Thus, this study aimed to identify potent phytocompounds that can effectively inhibit SARS-CoV-2 nsp16. We performed in silico pharmacokinetic screening and molecular docking studies using 100 phytocompounds—isolated from fourteen Nigerian plants—as ligands and nsp16 (PDB: 6YZ1) as the target. Results We found that only 59 phytocompounds passed the drug-likeness analysis test. However, after the docking analysis, only six phytocompounds (oxopowelline, andrographolide, deacetylbowdensine, 11, 12-dimethyl sageone, sageone, and quercetin) isolated from four Nigerian plants (Crinum jagus, Andrographis paniculata, Sage plants (Salvia officinalis L.), and Anacardium occidentale) showed good binding affinity with nsp16 at its active site with docking score ranging from − 7.9 to − 8.4 kcal/mol. Conclusions Our findings suggest that the six phytocompounds could serve as therapeutic agents to prevent viral survival and replication in cells. However, further studies on the in vitro and in vivo inhibitory activities of these 6 hit phytocompounds against SARS-CoV-2 nsp16 are needed to confirm their efficacy and dose.


Author(s):  
Thomas JT ◽  
◽  
Thomas T ◽  

The advent of new variations and the outbreak of pandemic COVID-19 has pushed research among global health professionals to limit the spread of the coronavirus through periodically updated norms and standards of preventive treatment. Dentists have been limited in their practice to emergency care since 2019, as salivary droplets and infectious aerosols from asymptomatic carriers can cross, contaminate the environment. Exaggerated immune responses in patients with poor dental hygiene act as a double-edged sword, manifesting clinically as increased periodontal pockets degrading the tooth supporting tissues, tooth mobility, and tooth loss. SARS- CoV 2 has been discovered in the dental biofilm of infected individuals, according to recent research. Deep periodontal pockets have been identified as a favorable niche for viral survival. This article covers some current study updates and highlights the significance of educating the public, particularly the older population, about maintaining good oral hygiene and minimizing COVID-19 transmission through supportive periodontal treatments.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1044
Author(s):  
Weixin Wu ◽  
Xinna Ge ◽  
Yongning Zhang ◽  
Jun Han ◽  
Xin Guo ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) is economically important and characterized by its extensive variation. The codon usage patterns and their influence on viral evolution and host adaptation among different PRRSV strains remain largely unknown. Here, the codon usage of ORF5 genes from lineages 1, 3, 5, and 8, and MLV strains of type 2 PRRSV in China was analyzed. A compositional property analysis of ORF5 genes revealed that nucleotide C is most frequently used at the third position of codons, accompanied by rich GC3s. The effective number of codon (ENC) and codon pair bias (CPB) values indicate that all ORF5 genes have low codon bias and the differences in CPB scores among four lineages are almost not significant. When compared with host codon usage patterns, lineage 1 strains show higher CAI and SiD values, with a high similarity to pig, which might relate to its predominant epidemic propensity in the field. The CAI, RCDI, and SiD values of ORF5 genes from different passages of MLV JXA1R indicate no relation between attenuation and CPB or codon adaptation decrease during serial passage on non-host cells. These findings provide a novel way of understanding the PRRSV’s evolution, related to viral survival, host adaptation, and virulence.


2021 ◽  
Author(s):  
Haripriya Parthasarathy ◽  
Divya Gupta ◽  
Abhirami P Suresh ◽  
Dixit Tandel ◽  
Vishal Sah ◽  
...  

The relationship of SARS-CoV-2 with the host translation remains largely unexplored. Using polysome profiling of SARS-CoV-2 infected Caco2 cells, we here demonstrate that the virus induces a strong suppression of global translation by 48 hours of infection. Heavy polysome fractions displayed substantial depletion in the infected cells, indicating the loss of major translational activities in them. Further assessment of the major pathways regulating translation in multiple permissive cell lines revealed strong eIF4E dephosphorylation accompanied by Mnk1 depletion and ERK1/2 dephosphorylations. p38MAPK showed consistent activation and its inhibition lowered viral titers, indicating its importance in viral survival. No significant change was noticed in eIF2 α phosphorylation. mTORC1 pathway showed the most profound inhibition, indicating its potential contribution to the suppression of global translation associated with the infection. Pharmacological activation of mTORC1 caused a drop in viral titers while inhibition resulted in higher viral RNA levels, confirming a critical role of mTORC1 in regulating viral replication. Surprisingly, the infection did not cause a general suppression of 5′-TOP translation, as evident from the continued expression of ribosomal proteins. Our results collectively indicate that the differential suppression of mTORC1 might allow SARS-CoV-2 to hijack translational machinery in its favor and specifically target a set of host mRNAs.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 824
Author(s):  
Valarmathy Murugaiah ◽  
Praveen M. Varghese ◽  
Nazar Beirag ◽  
Syreeta De Cordova ◽  
Robert B. Sim ◽  
...  

The complement system represents a crucial part of innate immunity. It contains a diverse range of soluble activators, membrane-bound receptors, and regulators. Its principal function is to eliminate pathogens via activation of three distinct pathways: classical, alternative, and lectin. In the case of viruses, the complement activation results in effector functions such as virion opsonisation by complement components, phagocytosis induction, virolysis by the membrane attack complex, and promotion of immune responses through anaphylatoxins and chemotactic factors. Recent studies have shown that the addition of individual complement components can neutralise viruses without requiring the activation of the complement cascade. While the complement-mediated effector functions can neutralise a diverse range of viruses, numerous viruses have evolved mechanisms to subvert complement recognition/activation by encoding several proteins that inhibit the complement system, contributing to viral survival and pathogenesis. This review focuses on these complement-dependent and -independent interactions of complement components (especially C1q, C4b-binding protein, properdin, factor H, Mannose-binding lectin, and Ficolins) with several viruses and their consequences.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1124
Author(s):  
Hengxiao Zhai ◽  
Chihai Ji ◽  
Maria Carol Walsh ◽  
Jon Bergstrom ◽  
Sebastien Potot ◽  
...  

African swine fever virus is one of the most highly contagious and lethal viruses for the global swine industry. Strengthening biosecurity is the only effective measure for preventing the spread of this viral disease. The virus can be transmitted through contaminated feedstuffs and, therefore, research has been conducted to explore corresponding mitigating measures. The purpose of the current study was to test a combination of pure benzoic acid and a blend of nature identical flavorings for their ability to reduce African swine fever viral survival in feed. This virus was inoculated to feed with or without the supplementation of the test compounds, and the viral presence and load were measured by a hemadsorption test and quantitative real time polymerase chain reaction. The main finding was that the combination of pure benzoic acid and nature identical flavorings could expedite the reduction in both viral load and survival in a swine feed. Therefore, this solution could be adopted as a preventive measure for mitigating the risk of contaminated feed by African swine fever virus.


Author(s):  
Scott Dee ◽  
Apoorva Shah ◽  
Cassandra Jones ◽  
Aaron Singrey ◽  
Dan Hanson ◽  
...  

The hypothesis that feed ingredients could serve as vehicles for the transport and transmission of viral pathogens was first validated under laboratory conditions. To bridge the gap from the laboratory to the field, this current project tested whether three significant viruses of swine could survive in feed ingredients during long-distance commercial transport across the continental US. One-metric ton totes of soybean meal (organic and conventional) and complete feed were spiked with a 10 mL mixture of PRRSV 174, PEDV, and SVA and transported for 23 days in a commercial semi-trailer truck, crossing 29 states, and 10,183 km. Samples were tested for the presence of viral RNA by PCR, and for viable virus in soy-based samples by swine bioassay and in complete feed samples by natural feeding. Viable PRRSV, PEDV, and SVA were detected in both soy products and viable PEDV and SVA in complete feed. These results provide the first evidence that viral pathogens of pigs can survive in representative volumes of feed and feed ingredients during long-distance commercial transport across the continental US.


2021 ◽  
Vol 13 (1) ◽  
pp. 107-116
Author(s):  
Neda Nasheri ◽  
Jennifer Harlow ◽  
Angela Chen ◽  
Nathalie Corneau ◽  
Sabah Bidawid

AbstractEnteric viruses, such as human norovirus (NoV) and hepatitis A virus (HAV), are the major causes of foodborne illnesses worldwide. These viruses have low infectious dose, and may remain infectious for weeks in the environment and food. Limited information is available regarding viral survival and transmission in low-moisture foods (LMF). LMFs are generally considered as ready-to-eat products, which undergo no or minimal pathogen reduction steps. However, numerous foodborne viral outbreaks associated with LMFs have been reported in recent years. The objective of this study was to examine the survival of foodborne viruses in LMFs during 4-week storage at ambient temperature and to evaluate the efficacy of advanced oxidative process (AOP) treatment in the inactivation of these viruses. For this purpose, select LMFs such as pistachios, chocolate, and cereal were inoculated with HAV and the norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), then viral survival on these food matrices was measured over a four-week incubation at ambient temperature, by both plaque assay and droplet-digital RT-PCR (ddRT-PCR) using the modified ISO-15216 method as well as the magnetic bead assay for viral recovery. We observed an approximately 0.5 log reduction in viral genome copies, and 1 log reduction in viral infectivity for all three tested viruses following storage of select inoculated LMFs for 4 weeks. Therefore, the present study shows that the examined foodborne viruses can persist for a long time in LMFs. Next, we examined the inactivation efficacy of AOP treatment, which combines UV-C, ozone, and hydrogen peroxide vapor, and observed that while approximately 100% (4 log) inactivation can be achieved for FCV, and MNV in chocolate, the inactivation efficiency diminishes to approximately 90% (1 log) in pistachios and 70% (< 1 log) in cereal. AOP treatment could therefore be a good candidate for risk reduction of foodborne viruses from certain LMFs depending on the food matrix and surface of treatment.


Sign in / Sign up

Export Citation Format

Share Document