scholarly journals The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michel Tauc ◽  
Marc Cougnon ◽  
Romain Carcy ◽  
Nicolas Melis ◽  
Thierry Hauet ◽  
...  

AbstractSince the demonstration of its involvement in cell proliferation, the eukaryotic initiation factor 5A (eIF5A) has been studied principally in relation to the development and progression of cancers in which the isoform A2 is mainly expressed. However, an increasing number of studies report that the isoform A1, which is ubiquitously expressed in normal cells, exhibits novel molecular features that reveal its new relationships between cellular functions and organ homeostasis. At a first glance, eIF5A can be regarded, among other things, as a factor implicated in the initiation of translation. Nevertheless, at least three specificities: (1) its extreme conservation between species, including plants, throughout evolution, (2) its very special and unique post-translational modification through the activating-hypusination process, and finally (3) its close relationship with the polyamine pathway, suggest that the role of eIF5A in living beings remains to be uncovered. In fact, and beyond its involvement in facilitating the translation of proteins containing polyproline residues, eIF5A is implicated in various physiological processes including ischemic tolerance, metabolic adaptation, aging, development, and immune cell differentiation. These newly discovered physiological properties open up huge opportunities in the clinic for pathologies such as, for example, the ones in which the oxygen supply is disrupted. In this latter case, organ transplantation, myocardial infarction or stroke are concerned, and the current literature defines eIF5A as a new drug target with a high level of potential benefit for patients with these diseases or injuries. Moreover, the recent use of genomic and transcriptomic association along with metadata studies also revealed the implication of eIF5A in genetic diseases. Thus, this review provides an overview of eIF5A from its molecular mechanism of action to its physiological roles and the clinical possibilities that have been recently reported in the literature.

1997 ◽  
Vol 328 (3) ◽  
pp. 847-854 ◽  
Author(s):  
E. Margaret TOME ◽  
M. Steven FISER ◽  
M. Claire PAYNE ◽  
W. Eugene GERNER

DH23A cells, an α-difluoromethylornithine-resistant variant of the parental hepatoma tissue culture cells, express high levels of stable ornithine decarboxylase. Aberrantly high expression of ornithine decarboxylase results in a large accumulation of endogenous putrescine and increased apoptosis in DH23A cells when α-difluoromethylornithine is removed from the culture. Treatment of DH23A cells with exogenous putrescine in the presence of α-difluoromethylornithine mimics the effect of drug removal, suggesting that putrescine is a causative agent or trigger of apoptosis. Accumulation of excess intracellular putrescine inhibits the formation of hypusine in vivo, a reaction that proceeds by the transfer of the butylamine moiety of spermidine to a lysine residue in eukaryotic initiation factor 5A (eIF-5A). Treatment of DH23A cells with diaminoheptane, a competitive inhibitor of the post-translational modification of eIF-5A, causes both the suppression of eIF-5A modification in vivo and induction of apoptosis. These data support the hypothesis that rapid degradation of ornithine decarboxylase is a protective mechanism to avoid cell toxicity from putrescine accumulation. Further, these data suggest that suppression of modified eIF-5A formation is one mechanism by which cells may be induced to undergo apoptosis.


2000 ◽  
Vol 74 (17) ◽  
pp. 7730-7737 ◽  
Author(s):  
Simon Léonard ◽  
Daniel Plante ◽  
Sylvie Wittmann ◽  
Nicole Daigneault ◽  
Marc G. Fortin ◽  
...  

ABSTRACT The interaction between the viral protein linked to the genome (VPg) of turnip mosaic potyvirus (TuMV) and the translation eukaryotic initiation factor eIF(iso)4E of Arabidopsis thaliana has previously been reported. eIF(iso)4E binds the cap structure (m7GpppN, where N is any nucleotide) of mRNAs and has an important role in the regulation in the initiation of translation. In the present study, it was shown that not only did VPg bind eIF(iso)4E but it also interacted with the eIF4E isomer of A. thalianaas well as with eIF(iso)4E of Triticum aestivum (wheat). The interaction domain on VPg was mapped to a stretch of 35 amino acids, and substitution of an aspartic acid residue found within this region completely abolished the interaction. The cap analogue m7GTP, but not GTP, inhibited VPg-eIF(iso)4E complex formation, suggesting that VPg and cellular mRNAs compete for eIF(iso)4E binding. The biological significance of this interaction was investigated. Brassica perviridis plants were infected with a TuMV infectious cDNA (p35Tunos) and p35TuD77N, a mutant which contained the aspartic acid substitution in the VPg domain that abolished the interaction with eIF(iso)4E. After 20 days, plants bombarded with p35Tunos showed viral symptoms, while plants bombarded with p35TuD77N remained symptomless. These results suggest that VPg-eIF(iso)4E interaction is a critical element for virus production.


2000 ◽  
Vol 20 (16) ◽  
pp. 6019-6029 ◽  
Author(s):  
Ivan B. Lomakin ◽  
Christopher U. T. Hellen ◽  
Tatyana V. Pestova

ABSTRACT Mammalian eukaryotic initiation factor 4GI (eIF4GI) may be divided into three similarly sized regions. The central region (amino acids [aa] 613 to 1090) binds eIF3, eIF4A, and the encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES) and mediates initiation on this RNA. We identified the regions of eIF4GI that are responsible for its specific interaction with the IRES and that are required to mediate 48S complex formation on the IRES in vitro. Mutational analysis demarcated the IRES binding fragment of eIF4GI (aa 746 to 949) and indicated that it does not resemble an RNA recognition motif (RRM)-like domain. An additional amino-terminal sequence (aa 722 to 746) was required for binding eIF4A and for 48S complex formation. eIF4GI bound the EMCV IRES and β-globin mRNA with similar affinities, but association with eIF4A increased its affinity for the EMCV IRES (but not β-globin RNA) by 2 orders of magnitude. On the other hand, eIF4GI mutants with defects in binding eIF4A were defective in mediating 48S complex formation even if they bound the IRES normally. These data indicate that the eIF4G-eIF4A complex, rather than eIF4G alone, is required for specific high-affinity binding to the EMCV IRES and for internal ribosomal entry on this RNA.


Sign in / Sign up

Export Citation Format

Share Document