scholarly journals Progression of regional lung strain and heterogeneity in lung injury: assessing the evolution under spontaneous breathing and mechanical ventilation

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel E. Hurtado ◽  
Benjamín Erranz ◽  
Felipe Lillo ◽  
Mauricio Sarabia-Vallejos ◽  
Pablo Iturrieta ◽  
...  
2020 ◽  
Vol 318 (3) ◽  
pp. L494-L499 ◽  
Author(s):  
Seiha Yen ◽  
Melissa Preissner ◽  
Ellen Bennett ◽  
Stephen Dubsky ◽  
Richard Carnibella ◽  
...  

Both overdistension and atelectasis contribute to lung injury and mortality during mechanical ventilation. It has been proposed that combinations of tidal volume and end-expiratory lung volume exist that minimize lung injury linked to mechanical ventilation. The aim of this study was to examine this at the regional level in the healthy and endotoxemic lung. Adult female BALB/c mice were injected intraperitoneally with 10 mg/kg lipopolysaccharide (LPS) in saline or with saline alone. Four hours later, mice were mechanically ventilated for 2 h. Regional specific end-expiratory volume (sEEV) and tidal volume (sVt) were measured at baseline and after 2 h of ventilation using dynamic high-resolution four-dimensional computed tomography images. The regional expression of inflammatory genes was quantified by quantitative PCR. There was a heterogenous response in regional sEEV whereby endotoxemia increased gas trapping at end-expiration in some lung regions. Within the healthy group, there was a relationship between sEEV, sVt, and the expression of Tnfa, where high Vt in combination with high EEV or very low EEV was associated with an increase in gene expression. In endotoxemia there was an association between low sEEV, particularly when this was combined with moderate sVt, and high expression of IL6. Our data suggest that preexisting systemic inflammation modifies the relationship between regional lung volumes and inflammation and that although optimum EEV-Vt combinations to minimize injury exist, further studies are required to identify the critical inflammatory mediators to assess and the effect of different injury types on the response.


2020 ◽  
Vol 129 (4) ◽  
pp. 837-845
Author(s):  
Seiha Yen ◽  
Yong Song ◽  
Melissa Preissner ◽  
Ellen Bennett ◽  
Richard Wilson ◽  
...  

This study provides novel insights into the regional response to mechanical ventilation in the setting of acid-induced lung injury and highlights the complex interaction between tidal stretch and low end-expiratory lung volumes; both of which caused altered regulation of different injury pathways.


2018 ◽  
Vol 198 (7) ◽  
pp. 891-902 ◽  
Author(s):  
Gabriel C. Motta-Ribeiro ◽  
Soshi Hashimoto ◽  
Tilo Winkler ◽  
Rebecca M. Baron ◽  
Kira Grogg ◽  
...  

1987 ◽  
Vol 63 (6) ◽  
pp. 2467-2475 ◽  
Author(s):  
R. D. Hubmayr ◽  
J. R. Rodarte ◽  
B. J. Walters ◽  
F. M. Tonelli

We evaluated the effects of the different patterns of chest wall deformation that occur with different body positions and modes of breathing on regional lung deformation and ventilation. Using the parenchymal marker technique, we determined regional lung behavior during mechanical ventilation and spontaneous breathing in five anesthetized recumbent dogs. Regional lung behavior was related to the patterns of diaphragm motion estimated from X-ray projection images obtained at functional residual capacity (FRC) and end inspiration. Our results indicate that 1) in the prone and supine positions, FRC was larger during mechanical ventilation than during spontaneous breathing; 2) there were significant differences in the patterns of diaphragm motion and regional ventilation between mechanical ventilation and spontaneous breathing in both body positions; 3) in the supine position only, there was a vertical gradient in lung volume at FRC; 4) in both positions and for both modes of breathing, regional ventilation was nonlinearly related to changes in lobar and overall lung volumes; and 5) different patterns of diaphragm motion caused different sliding motions and differential rotations of upper and lower lobes. Our results are inconsistent with the classic model of regional ventilation, and we conclude that the distribution of ventilation is determined by a complex interaction of lung and chest wall shapes and by the motion of the lobes relative to each other, all of which help to minimize distortion of the lung parenchyma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luca Fardin ◽  
Ludovic Broche ◽  
Goran Lovric ◽  
Alberto Mittone ◽  
Olivier Stephanov ◽  
...  

AbstractMechanical ventilation can damage the lungs, a condition called Ventilator-Induced Lung Injury (VILI). However, the mechanisms leading to VILI at the microscopic scale remain poorly understood. Here we investigated the within-tidal dynamics of cyclic recruitment/derecruitment (R/D) using synchrotron radiation phase-contrast imaging (PCI), and the relation between R/D and cell infiltration, in a model of Acute Respiratory Distress Syndrome in 6 anaesthetized and mechanically ventilated New-Zealand White rabbits. Dynamic PCI was performed at 22.6 µm voxel size, under protective mechanical ventilation [tidal volume: 6 ml/kg; positive end-expiratory pressure (PEEP): 5 cmH2O]. Videos and quantitative maps of within-tidal R/D showed that injury propagated outwards from non-aerated regions towards adjacent regions where cyclic R/D was present. R/D of peripheral airspaces was both pressure and time-dependent, occurring throughout the respiratory cycle with significant scatter of opening/closing pressures. There was a significant association between R/D and regional lung cellular infiltration (p = 0.04) suggesting that tidal R/D of the lung parenchyma may contribute to regional lung inflammation or capillary-alveolar barrier dysfunction and to the progression of lung injury. PEEP may not fully mitigate this phenomenon even at high levels. Ventilation strategies utilizing the time-dependence of R/D may be helpful in reducing R/D and associated injury.


Sign in / Sign up

Export Citation Format

Share Document