scholarly journals Stochastic block coordinate Frank-Wolfe algorithm for large-scale biological network alignment

Author(s):  
Yijie Wang ◽  
Xiaoning Qian
2018 ◽  
Vol 14 (1) ◽  
pp. 4-10
Author(s):  
Fang Jing ◽  
Shao-Wu Zhang ◽  
Shihua Zhang

Background:Biological network alignment has been widely studied in the context of protein-protein interaction (PPI) networks, metabolic networks and others in bioinformatics. The topological structure of networks and genomic sequence are generally used by existing methods for achieving this task.Objective and Method:Here we briefly survey the methods generally used for this task and introduce a variant with incorporation of functional annotations based on similarity in Gene Ontology (GO). Making full use of GO information is beneficial to provide insights into precise biological network alignment.Results and Conclusion:We analyze the effect of incorporation of GO information to network alignment. Finally, we make a brief summary and discuss future directions about this topic.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shawn Gu ◽  
Tijana Milenković

Abstract Background Network alignment (NA) can transfer functional knowledge between species’ conserved biological network regions. Traditional NA assumes that it is topological similarity (isomorphic-like matching) between network regions that corresponds to the regions’ functional relatedness. However, we recently found that functionally unrelated proteins are as topologically similar as functionally related proteins. So, we redefined NA as a data-driven method called TARA, which learns from network and protein functional data what kind of topological relatedness (rather than similarity) between proteins corresponds to their functional relatedness. TARA used topological information (within each network) but not sequence information (between proteins across networks). Yet, TARA yielded higher protein functional prediction accuracy than existing NA methods, even those that used both topological and sequence information. Results Here, we propose TARA++ that is also data-driven, like TARA and unlike other existing methods, but that uses across-network sequence information on top of within-network topological information, unlike TARA. To deal with the within-and-across-network analysis, we adapt social network embedding to the problem of biological NA. TARA++ outperforms protein functional prediction accuracy of existing methods. Conclusions As such, combining research knowledge from different domains is promising. Overall, improvements in protein functional prediction have biomedical implications, for example allowing researchers to better understand how cancer progresses or how humans age.


Author(s):  
Nicola Ferraro ◽  
Luigi Palopoli ◽  
Simona Panni ◽  
Simona E. Rombo

2021 ◽  
Vol 25 (5) ◽  
pp. 1153-1168
Author(s):  
Bentian Li ◽  
Dechang Pi ◽  
Yunxia Lin ◽  
Izhar Ahmed Khan

Biological network classification is an eminently challenging task in the domain of data mining since the networks contain complex structural information. Conventional biochemical experimental methods and the existing intelligent algorithms still suffer from some limitations such as immense experimental cost and inferior accuracy rate. To solve these problems, in this paper, we propose a novel framework for Biological graph classification named Biogc, which is specifically developed to predict the label of both small-scale and large-scale biological network data flexibly and efficiently. Our framework firstly presents a simplified graph kernel method to capture the structural information of each graph. Then, the obtained informative features are adopted to train different scale biological network data-oriented classifiers to construct the prediction model. Extensive experiments on five benchmark biological network datasets on graph classification task show that the proposed model Biogc outperforms the state-of-the-art methods with an accuracy rate of 98.90% on a larger dataset and 99.32% on a smaller dataset.


Author(s):  
Hyun-Myung Woo ◽  
Byung-Jun Yoon

Abstract Motivation Alignment of protein–protein interaction networks can be used for the unsupervised prediction of functional modules, such as protein complexes and signaling pathways, that are conserved across different species. To date, various algorithms have been proposed for biological network alignment, many of which attempt to incorporate topological similarity between the networks into the alignment process with the goal of constructing accurate and biologically meaningful alignments. Especially, random walk models have been shown to be effective for quantifying the global topological relatedness between nodes that belong to different networks by diffusing node-level similarity along the interaction edges. However, these schemes are not ideal for capturing the local topological similarity between nodes. Results In this article, we propose MONACO, a novel and versatile network alignment algorithm that finds highly accurate pairwise and multiple network alignments through the iterative optimal matching of ‘local’ neighborhoods around focal nodes. Extensive performance assessment based on real networks as well as synthetic networks, for which the ground truth is known, demonstrates that MONACO clearly and consistently outperforms all other state-of-the-art network alignment algorithms that we have tested, in terms of accuracy, coherence and topological quality of the aligned network regions. Furthermore, despite the sharply enhanced alignment accuracy, MONACO remains computationally efficient and it scales well with increasing size and number of networks. Availability and implementation Matlab implementation is freely available at https://github.com/bjyoontamu/MONACO. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Shen ◽  
Muwei Zhao ◽  
Wei Zhong ◽  
Jieyue He

With the continuous development of biological experiment technology, more and more data related to uncertain biological networks needs to be analyzed. However, most of current alignment methods are designed for the deterministic biological network. Only a few can solve the probabilistic network alignment problem. However, these approaches only use the part of probabilistic data in the original networks allowing only one of the two networks to be probabilistic. To overcome the weakness of current approaches, an improved method called completely probabilistic biological network comparison alignment (C_PBNA) is proposed in this paper. This new method is designed for complete probabilistic biological network alignment based on probabilistic biological network alignment (PBNA) in order to take full advantage of the uncertain information of biological network. The degree of consistency (agreement) indicates that C_PBNA can find the results neglected by PBNA algorithm. Furthermore, the GO consistency (GOC) and global network alignment score (GNAS) have been selected as evaluation criteria, and all of them proved that C_PBNA can obtain more biologically significant results than those of PBNA algorithm.


2013 ◽  
Vol 7 (Suppl 2) ◽  
pp. S6 ◽  
Author(s):  
Qiang Huang ◽  
Ling-Yun Wu ◽  
Xiang-Sun Zhang

Sign in / Sign up

Export Citation Format

Share Document