scholarly journals Node importance evaluation method based on multi-attribute decision-making model in wireless sensor networks

Author(s):  
Rongrong Yin ◽  
Xueliang Yin ◽  
Mengdi Cui ◽  
Yinghan Xu

Abstract Identifying important nodes is very crucial to design efficient communication networks or contain the spreading of information such as diseases and rumors. The problem is formulated as follows: given a network, which nodes are the more important? Most current studies did not incorporate the structure change as well as application features of a network. Aiming at the node importance evaluation in wireless sensor networks, a new method which ranks nodes according to their structural importance and performance impact is proposed. Namely, this method considers two aspects of the network, network structural characteristics and application requirements. This method integrates four indicators which reflect the node importance, namely, node degree, number of spanning trees, delay, and network energy consumption. Firstly, the changes in the four indicators are analyzed using the node deletion method. Then, the TOPSIS multi-attribute decision-making method is applied to merge these four evaluation indicators. On this basis, a more comprehensive evaluation method (MADME) for node importance is obtained. Theory study reveals MADME method saves computational time. And the simulation results show the superiority of the MADME method over various algorithms such as the N-Burt method, betweenness method, DEL-Node method, and IE-Matrix method. The accuracy of the evaluation can be improved, and the key nodes determined by the MADME method have a more obvious effect on the network performance. Our method can provide guidance on influential node identification in the network.

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6111
Author(s):  
Sangjun Lee ◽  
Kyunghwan Cho ◽  
Jihye Kim ◽  
Jongho Park ◽  
Inhwan Lee ◽  
...  

Cryptographic circuits generally are used for applications of wireless sensor networks to ensure security and must be tested in a manufacturing process to guarantee their quality. Therefore, a scan architecture is widely used for testing the circuits in the manufacturing test to improve testability. However, during scan testing, test-power consumption becomes more serious as the number of transistors and the complexity of chips increase. Hence, the scan chain reordering method is widely applied in a low-power architecture because of its ability to achieve high power reduction with a simple architecture. However, achieving a significant power reduction without excessive computational time remains challenging. In this paper, a novel scan correlation-aware scan cluster reordering is proposed to solve this problem. The proposed method uses a new scan correlation-aware clustering in order to place highly correlated scan cells adjacent to each other. The experimental results demonstrate that the proposed method achieves a significant power reduction with a relatively fast computational time compared with previous methods. Therefore, by improving the reliability of cryptography circuits in wireless sensor networks (WSNs) through significant test-power reduction, the proposed method can ensure the security and integrity of information in WSNs.


Author(s):  
Luci Pirmez ◽  
Flavia C. Delicato ◽  
Paulo F. Pires ◽  
Ana L. Mostardinha ◽  
Nelson S. de Rezende

Sign in / Sign up

Export Citation Format

Share Document