scholarly journals Linear precoding design for massive MIMO based on the minimum mean square error algorithm

2017 ◽  
Vol 2017 (1) ◽  
Author(s):  
Zhou Ge ◽  
Wu Haiyan
Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Claudio Ferreira Dias ◽  
Eduardo Rodrigues de Lima ◽  
Gustavo Fraidenraich

Accurate channel estimation is of utmost importance for massive MIMO systems that allow providing significant improvements in spectral and energy efficiency. In this work, we investigate the spectral efficiency performance and present a channel estimator for multi-cell massive MIMO systems subjected to pilot-contamination. The proposed channel estimator performs well under moderate to aggressive pilot contamination scenarios without prior knowledge of the inter-cell large-scale channel coefficients and noise power. The estimator approximates the performance of a linear Minimum Mean Square Error (MMSE) as the number of antennas increases. Following, we derive a lower bound closed-form spectral efficiency of the Maximum Ratio Combining (MRC) detector in the proposed channel estimator. The simulation results highlight that the proposed estimator performance approaches the linear minimum mean square error (LMMSE) channel estimator asymptotically.


2019 ◽  
Vol 25 (4) ◽  
pp. 81-87 ◽  
Author(s):  
Babar Mansoor ◽  
Moazzam Islam Tiwana ◽  
Syed Junaid Nawaz ◽  
Abrar Ahmed ◽  
Abdul Haseeb ◽  
...  

Massive Multiple-Input Multiple-Output (MIMO) is envisioned to be a strong candidate technology for the upcoming 5th generation (5G) of wireless communication networks. This research work presents a novel Compressed Sensing (CS) and Superimposed Training (SiT) based technique for estimating the sparse uplink channels in massive MIMO systems. The proposed technique involves arithmetic addition of a periodic, but low powered training sequence with each user’s information sequence. Consequently, separately dedicated resources for the pilot symbols are not needed. Moreover, to attain the estimates of the Channel State Information (CSI) in the uplink, the sparsity exhibited by the MIMO channels is exploited by incorporating CS based Orthogonal Matching Pursuit (OMP) algorithm. For decoding the transmitted information symbols of each user, a Linear Minimum Mean Square Error (LMMSE) based equalizer is incorporated at the receiving Base Station (BS). Based on the obtained simulation results, the proposed SiT-OMP technique outperforms the existing Least Squares (SiT) channel estimation technique. The comparison is done using performance metrics of the Bit Error Rate (BER) and the Normalized Channel Mean Square Error (NCMSE).


Author(s):  
Emmanuel Mukubwa ◽  
Oludare Sokoya

This article investigates channel estimation problem in massive MIMO partially centralized cloud-RAN (MPC-RAN). The channel estimation was realized through compressed data method to minimize the huge pilot overhead, then combined with parallel Givens data projection method (PGDPM) to form a semi-blind estimator. Comparison and analysis of improved minimum mean square error (MMSE), fast data projection method (FDPM), compressed data, and PGDPM techniques was evaluated for achievable normalized mean square error (NMSE) in MPC-RAN. The PGDPM-based estimator had the lowest normalized mean square error. The FDPM and PGDPM based methods are comparable in performance with PGDPM based estimator having a slight edge over FDPM-based estimator. This vindicates PGDPM-based estimator as a method to be utilized in channel estimation since it compresses the massive MIMO channel information, hence mitigating the fronthaul finite capacity problem, and at the same time, it is geared towards efficient parallelization for optimal BBU resource utilization.


2019 ◽  
Vol 28 (1) ◽  
pp. 145-152
Author(s):  
Abd El-aziz Ebrahim Hsaneen ◽  
EL-Sayed M. El-Rabaei ◽  
Moawad I. Dessouky ◽  
Ghada El-bamby ◽  
Fathi E. Abd El-Samie ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 3763
Author(s):  
Yunlong Zou ◽  
Jinyu Zhao ◽  
Yuanhao Wu ◽  
Bin Wang

Space object recognition in high Earth orbits (between 2000 km and 36,000 km) is affected by moonlight and clouds, resulting in some bright or saturated image areas and uneven image backgrounds. It is difficult to separate dim objects from complex backgrounds with gray thresholding methods alone. In this paper, we present a segmentation method of star images with complex backgrounds based on correlation between space objects and one-dimensional (1D) Gaussian morphology, and the focus is shifted from gray thresholding to correlation thresholding. We build 1D Gaussian functions with five consecutive column data of an image as a group based on minimum mean square error rules, and the correlation coefficients between the column data and functions are used to extract objects and stars. Then, lateral correlation is repeated around the identified objects and stars to ensure their complete outlines, and false alarms are removed by setting two values, the standard deviation and the ratio of mean square error and variance. We analyze the selection process of each thresholding, and experimental results demonstrate that our proposed correlation segmentation method has obvious advantages in complex backgrounds, which is attractive for object detection and tracking on a cloudy and bright moonlit night.


Author(s):  
Eiichi Yoshikawa ◽  
Naoya Takizawa ◽  
Hiroshi Kikuchi ◽  
Tomoaki Mega ◽  
Tomoo Ushio

Sign in / Sign up

Export Citation Format

Share Document