scholarly journals Optimal control of a viscous generalized θ-type dispersive equation with weak dissipation

2020 ◽  
Vol 18 (1) ◽  
pp. 1302-1316
Author(s):  
Guobing Fan ◽  
Zhifeng Yang

Abstract In this paper, we investigate the problem for optimal control of a viscous generalized \theta -type dispersive equation (VG \theta -type DE) with weak dissipation. First, we prove the existence and uniqueness of weak solution to the equation. Then, we present the optimal control of a VG \theta -type DE with weak dissipation under boundary condition and prove the existence of optimal solution to the problem.

Filomat ◽  
2016 ◽  
Vol 30 (6) ◽  
pp. 1549-1557
Author(s):  
Sandra Hodzic ◽  
Bosko Jovanovic

We consider Poisson?s equation on the unit square with a nonlocal boundary condition. The existence and uniqueness of its weak solution in Sobolev spaceH1 is proved. A finite difference scheme approximating this problem is proposed. An error estimate compatible with the smoothness of input data in discrete H1 Sobolev norm is obtained.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Yusuf Koçak ◽  
Ercan Çelik ◽  
Nigar Yıldırım Aksoy

AbstractIn this work, we present some results showing the controllability of the linear Schrödinger equation with complex potentials. Firstly we investigate the existence and uniqueness theorem for solution of the considered problem. Then we find the gradient of the cost functional with the help of Hamilton-Pontryagin functions. Finally we state a necessary condition in the form of variational inequality for the optimal solution using this gradient.


2016 ◽  
Vol 27 (5) ◽  
pp. 756-780
Author(s):  
SALEH TANVEER ◽  
CHARIS TSIKKOU

We present local existence and uniqueness results for the following 2 + 1 diffusive–dispersive equation due to P. Hall arising in modelling of river braiding: $$\begin{equation*} u_{yyt} - \gamma u_{xxx} -\alpha u_{yyyy} - \beta u_{yy} + \left ( u^2 \right )_{xyy} = 0 \end{equation*}$$ for (x,y) ∈ [0, 2π] × [0, π], t > 0, with boundary condition uy=0=uyyy at y=0 and y=π and 2π periodicity in x, using a contraction mapping argument in a Bourgain-type space Ts,b. We also show that the energy ∥u(·, ·, t)∥2L2 and cumulative dissipation ∫0t∥uy (·, ·, s)∥L22dt are globally controlled in time t.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Jun Moon

AbstractWe consider the optimal control problem for stochastic differential equations (SDEs) with random coefficients under the recursive-type objective functional captured by the backward SDE (BSDE). Due to the random coefficients, the associated Hamilton–Jacobi–Bellman (HJB) equation is a class of second-order stochastic PDEs (SPDEs) driven by Brownian motion, which we call the stochastic HJB (SHJB) equation. In addition, as we adopt the recursive-type objective functional, the drift term of the SHJB equation depends on the second component of its solution. These two generalizations cause several technical intricacies, which do not appear in the existing literature. We prove the dynamic programming principle (DPP) for the value function, for which unlike the existing literature we have to use the backward semigroup associated with the recursive-type objective functional. By the DPP, we are able to show the continuity of the value function. Using the Itô–Kunita’s formula, we prove the verification theorem, which constitutes a sufficient condition for optimality and characterizes the value function, provided that the smooth (classical) solution of the SHJB equation exists. In general, the smooth solution of the SHJB equation may not exist. Hence, we study the existence and uniqueness of the solution to the SHJB equation under two different weak solution concepts. First, we show, under appropriate assumptions, the existence and uniqueness of the weak solution via the Sobolev space technique, which requires converting the SHJB equation to a class of backward stochastic evolution equations. The second result is obtained under the notion of viscosity solutions, which is an extension of the classical one to the case for SPDEs. Using the DPP and the estimates of BSDEs, we prove that the value function is the viscosity solution to the SHJB equation. For applications, we consider the linear-quadratic problem, the utility maximization problem, and the European option pricing problem. Specifically, different from the existing literature, each problem is formulated by the generalized recursive-type objective functional and is subject to random coefficients. By applying the theoretical results of this paper, we obtain the explicit optimal solution for each problem in terms of the solution of the corresponding SHJB equation.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Igor Pažanin

We consider a flow of incompressible Newtonian fluid through a pipe with helical shape. We suppose that the flow is governed by the prescribed pressure drop between pipe's ends. Such model has relevance to some important engineering applications. Under small data assumption, we prove the existence and uniqueness of the weak solution to the corresponding Navier-Stokes system with pressure boundary condition. The proof is based on the contraction method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. M. Serag ◽  
Abd-Allah Hyder ◽  
M. El-Badawy

AbstractIn this work, the elliptic $2\times 2$ 2 × 2 cooperative systems involving fractional Laplace operators are studied. Due to the nonlocality of the fractional Laplace operator, we reformulate the problem into a local problem by an extension problem. Then, the existence and uniqueness of the weak solution for these systems are proved. Hence, the existence and optimality conditions are deduced.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abderrezak Kasri

Abstract The aim of this paper is to study a quasistatic contact problem between an electro-elastic viscoplastic body with damage and an electrically conductive foundation. The contact is modelled with an electrical condition, normal compliance and the associated version of Coulomb’s law of dry friction in which slip dependent friction is included. We derive a variational formulation for the model and, under a smallness assumption, we prove the existence and uniqueness of a weak solution.


Sign in / Sign up

Export Citation Format

Share Document