scholarly journals Fractional N-Laplacian boundary value problems with jumping nonlinearities in the fractional Orlicz–Sobolev spaces

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Q-Heung Choi ◽  
Tacksun Jung

AbstractWe investigate the multiplicity of solutions for problems involving the fractional N-Laplacian. We obtain three theorems depending on the source terms in which the nonlinearities cross some eigenvalues. We obtain these results by direct computations with the eigenvalues and the corresponding eigenfunctions for the fractional N-Laplacian eigenvalue problem in the fractional Orlicz–Sobolev spaces, the contraction mapping principle on the fractional Orlicz–Sobolev spaces and Leray–Schauder degree theory.

2018 ◽  
Vol 10 (1) ◽  
pp. 65-70
Author(s):  
I.M. Cherevko ◽  
A.B. Dorosh

For the study of boundary value problems for delay differential equations, the contraction mapping principle and topological methods are used to obtain sufficient conditions for the existence of a solution of differential equations with a constant delay. In this paper, the ideas of the contraction mapping principle are used to obtain sufficient conditions for the existence of a solution of linear boundary value problems for integro-differential equations with many variable delays. Smoothness properties of the solutions of such equations are studied and the definition of the boundary value problem solution is proposed. Properties of the variable delays are analyzed and functional space is obtained in which the boundary value problem is equivalent to a special integral equation. Sufficient, simple for practical verification coefficient conditions for the original equation are found under which there exists a unique solution of the boundary value problem.


2016 ◽  
Vol 99 (113) ◽  
pp. 227-235 ◽  
Author(s):  
Lihong Zhang ◽  
Bashir Ahmad ◽  
Guotao Wang

We investigate a nonlinear impulsive qk-integral boundary value problem by means of Leray-Schauder degree theory and contraction mapping principle. The conditions ensuring the existence and uniqueness of solutions for the problem are presented. An illustrative example is discussed.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Bingzhi Sun ◽  
Weihua Jiang

Abstract By defining the Banach spaces endowed with the appropriate norm, constructing a suitable projection scheme, and using the coincidence degree theory due to Mawhin, we study the existence of solutions for functional boundary value problems at resonance on the half-line with $\operatorname{dim}\operatorname{Ker}L = 1$ dim Ker L = 1 . And an example is given to show that our result here is valid.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
R. Dhineshbabu ◽  
S. Rashid ◽  
M. Rehman

Abstract The results reported in this paper are concerned with the existence and uniqueness of solutions of discrete fractional order two-point boundary value problem. The results are developed by employing the properties of Caputo and Riemann–Liouville fractional difference operators, the contraction mapping principle and the Brouwer fixed point theorem. Furthermore, the conditions for Hyers–Ulam stability and Hyers–Ulam–Rassias stability of the proposed discrete fractional boundary value problem are established. The applicability of the theoretical findings has been demonstrated with relevant practical examples. The analysis of the considered mathematical models is illustrated by figures and presented in tabular forms. The results are compared and the occurrence of overlapping/non-overlapping has been discussed.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yousef Gholami

Abstract This investigation is devoted to the study of a certain class of coupled systems of higher-order Hilfer fractional boundary value problems at resonance. Combining the coincidence degree theory with the Lipschitz-type continuity conditions on nonlinearities, we present some existence and uniqueness criteria. Finally, to practically implement the obtained theoretical criteria, we give an illustrative application.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chanon Promsakon ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

This paper is concerned with the existence and uniqueness of solutions for a new class of boundary value problems, consisting by Hilfer-Hadamard fractional differential equations, supplemented with nonlocal integro-multipoint boundary conditions. The existence of a unique solution is obtained via Banach contraction mapping principle, while the existence results are established by applying Schaefer and Krasnoselskii fixed point theorems as well as Leray-Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 671 ◽  
Author(s):  
Surang Sitho ◽  
Chayapat Sudprasert ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this paper, we study the existence and uniqueness results for noninstantaneous impulsive fractional quantum Hahn integro-difference boundary value problems with integral boundary conditions, by using Banach contraction mapping principle and Leray–Schauder nonlinear alternative. Examples are included illustrating the obtained results. To the best of our knowledge, no work has reported on the existence of solutions to the Hahn-difference equation with noninstantaneous impulses.


Sign in / Sign up

Export Citation Format

Share Document