scholarly journals Adaptive control realization for canonic Caputo fractional-order systems with actuator nonlinearity: application to mechatronic devices

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mohammad Pourmahmood Aghababa ◽  
Mehrdad Saif
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Li-xin Yang ◽  
Wan-sheng He

This paper investigates the adaptive - synchronization of the fractional-order chaotic systems with nonidentical structures. Based on the stability of fractional-order systems and adaptive control technique, a general formula for designing the controller and parameters update law is proposed to achieve adaptive - synchronization between two different chaotic systems with different structures. The effective scheme parameters identification and - synchronization of chaotic systems can be realized simultaneously. Furthermore, two typical illustrative numerical simulations are given to demonstrate the effectiveness of the proposed scheme, for each case, we design the controller and parameter update laws in detail. The numerical simulations are performed to verify the effectiveness of the theoretical results.


2017 ◽  
Vol 10 (3) ◽  
pp. 527-540 ◽  
Author(s):  
Saeed Mirzajani ◽  
Mohammad Pourmahmood Aghababa ◽  
Aghileh Heydari

Author(s):  
Farouk Zouari ◽  
Amina Boubellouta

In this chapter, an adaptive control approach-based neural approximation is developed for a category of uncertain fractional-order systems with actuator nonlinearities and output constraints. First, to overcome the difficulties arising from the actuator nonlinearities and nonaffine structures, the mean value theorem is introduced. Second, to deal with the uncertain nonlinear dynamics, the unknown control directions and the output constraints, neural networks, smooth Nussbaum-type functions, and asymmetric barrier Lyapunov functions are employed, respectively. Moreover, for satisfactorily designing the control updating laws and to carry out the stability analysis of the overall closed-loop system, the Backstepping technique is used. The main advantage about this research is that (1) the number of parameters to be adapted is much reduced, (2) the tracking errors converge to zero, and (3) the output constraints are not transgressed. At last, simulation results demonstrate the feasibility of the newly presented design techniques.


Author(s):  
Yi Wang ◽  
Zhaoyan Wu

In this paper, cluster synchronization for fractional-order complex network with nondelay and delay coupling is investigated. Based on the stability theory of fractional-order systems and the properties of fractional derivative, both static and adaptive control schemes are adopted to design effective controllers. Sufficient condition for achieving cluster synchronization about static controllers is provided. From the condition, the needed feedback gains can be estimated by simple calculations. Further, adaptive control scheme is introduced to design unified controllers. Noticeably, in the adaptive controllers, the feedback gains need not be calculated in advance and can adjust themselves to the needed values according to updating laws. Finally, numerical simulations are given to demonstrate the correctness of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document