scholarly journals Market equilibria and money

Author(s):  
Sjur Didrik Flåm

AbstractBy the first welfare theorem, competitive market equilibria belong to the core and hence are Pareto optimal. Letting money be a commodity, this paper turns these two inclusions around. More precisely, by generalizing the second welfare theorem we show that the said solutions may coincide as a common fixed point for one and the same system.Mathematical arguments invoke conjugation, convolution, and generalized gradients. Convexity is merely needed via subdifferentiablity of aggregate “cost”, and at one point only.Economic arguments hinge on idealized market mechanisms. Construed as algorithms, each stops, and a steady state prevails if and only if price-taking markets clear and value added is nil.

Econometrica ◽  
1988 ◽  
Vol 56 (2) ◽  
pp. 361 ◽  
Author(s):  
Robert M. Anderson

Author(s):  
Krishnan Suresh

In multi-objective topology optimization, a design is defined to be “pareto-optimal” if no other design exists that is better with respect to one objective, and as good with respect to others. This unfortunately suggests that unless other ‘better’ designs are found, one cannot declare a particular topology to be pareto-optimal. In this paper, we first show that a topology can be guaranteed to be (locally) pareto-optimal if certain inherent properties associated with the topological sensitivity field are satisfied, i.e., no further comparison is necessary. This, in turn, leads to a deterministic, i.e., non-stochastic, method for directly tracing pareto-optimal frontiers using the classic fixed-point iteration scheme. The proposed method can generate the full set of pareto-optimal topologies in a single-run, and is therefore both efficient and predictable, as illustrated through numerical examples.


2005 ◽  
Vol 13 (4) ◽  
pp. 501-525 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Manikanth Mohan ◽  
Shikhar Mishra

Since the suggestion of a computing procedure of multiple Pareto-optimal solutions in multi-objective optimization problems in the early Nineties, researchers have been on the look out for a procedure which is computationally fast and simultaneously capable of finding a well-converged and well-distributed set of solutions. Most multi-objective evolutionary algorithms (MOEAs) developed in the past decade are either good for achieving a well-distributed solutions at the expense of a large computational effort or computationally fast at the expense of achieving a not-so-good distribution of solutions. For example, although the Strength Pareto Evolutionary Algorithm or SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational time needed to run SPEA is much greater. In this paper, we evaluate a recently-proposed steady-state MOEA (Deb et al., 2003) which was developed based on the ε-dominance concept introduced earlier (Laumanns et al., 2002) and using efficient parent and archive update strategies for achieving a well-distributed and well-converged set of solutions quickly. Based on an extensive comparative study with four other state-of-the-art MOEAs on a number of two, three, and four objective test problems, it is observed that the steady-state MOEA is a good compromise in terms of convergence near to the Pareto-optimal front, diversity of solutions, and computational time. Moreover, the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allowing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal solutions.


Author(s):  
Hartmut Hetzler ◽  
Wolfgang Seemann ◽  
Daniel Schwarzer

This article deals with analytical investigations on stability and bifurcations due to declining dry friction characteristics in the sliding domain of a simple disc-brake model, which is commonly referred to as “mass-on-a-belt”-oscillator. Sliding friction is described in the sense of Coulomb as proportional to the normal force, but with a friction coefficient μS which depends on the relative velocity. For many common friction models this latter dependence on the relative velocity can be described by exponential functions. For such a characteristic the stability and bifurcation behavior is discussed. It is shown, that the system can undergo a subcritical Hopf-bifurcation from an unstable steady-state fixed point to an unstable limit cycle, which separates the basins of the stable steady-state fixed point and the self sustained stick-slip limit cycle. Therefore, only a local examination of the eigenvalues at the steady-state, as is the classical ansatz when investigating conditions for the onset of friction-induced vibrations, may not give the whole picture, since the stable region around the steady state fixed point may be rather small. The analytical results are verified by numerical simulations. Parameter values are chosen for a model which corresponds to a conventional disc-brake.


2020 ◽  
Author(s):  
Kenneth D. Miller ◽  
Agostina Palmigiano

AbstractAn inhibition-stabilized network (ISN) is a network of excitatory and inhibitory cells at a stable fixed point of firing rates for a given input, for which the excitatory subnetwork would be unstable if inhibitory rates were frozen at their fixed point values. It has been shown that in a low-dimensional model (one unit per neuronal subtype) of an ISN with a single excitatory and single inhibitory cell type, the inhibitory unit shows a “paradoxical” response, lowering (raising) its steady-state firing rate in response to addition to it of excitatory (inhibitory) input. This has been generalized to an ISN with multiple inhibitory cell types: if input is given only to inhibitory cells, the steady-state inhibition received by excitatory cells changes paradoxically, that is, it decreases (increases) if the steady-state excitatory firing rates decrease (increase).We generalize these analyses of paradoxical effects to low-dimensional networks with multiple cell types of both excitatory and inhibitory neurons. The analysis depends on the connectivity matrix of the network linearized about a given fixed point, and its eigenvectors or “modes”. We show the following: (1) A given cell type shows a paradoxical change in steady-state rate in response to input it receives, if and only if the network with that cell type omitted has an odd number of unstable modes. Excitatory neurons can show paradoxical responses when there are two or more inhibitory subtypes. (2) More generally, if the cell types are divided into two nonoverlapping subsets A and B, then subset B has an odd (even) number of modes that show paradoxical response if and only if subset A has an odd (even) number of unstable modes. (3) The net steady-state inhibition received by any unstable mode of the excitatory subnetwork will change paradoxically, i.e. in the same direction as the change in amplitude of that mode. In particular, this means that a sufficient condition to determine that a network is an ISN is if, in response to an input only to inhibitory cells, the firing rates of and inhibition received by all excitatory cell types all change in the same direction. This in turn will be true if all E cells and all inhibitory cell types that connect to E cells change their firing rates in the same direction.


2019 ◽  
Vol 23 (4) ◽  
Author(s):  
Harutaka Takahashi ◽  
Kansho Piotr Otsubo

Abstract In the present study, we set up a continuous-time two-sector optimal growth model with services and manufacturing goods and then examine structural change: the rapid growth of the service sector. Earlier studies of structural changes can be separated into two categories: preference-driven and technology-driven. Here we introduce a new and distinct category of structural change: consumption externality identified as rise of the living standard. A key assumption is that (1) a representative consumer has a non-homothetic Stone–Geary type utility function with respect to manufacturing goods and that (2) its subsistence level will be regarded as the standard of living and will be affected by the average consumption of manufacturing goods, which also affects the consumption level of services. We also assume that the manufacturing sector is more capital-intensive than the service sector, which takes an important role in our proofs. Results show that a steady state equilibrium exists that is globally stable as well as saddle-point stable. Then, given certain production parameters in a steady state, there exists optimal steady state where the value-added and employment shares by service sector will dominate those of the manufacturing sector under the condition that external effects of the service sector dominates capital-intensity effect of the manufacturing sector. In other words, through the transition process, the service sector will dominate the manufacturing sector in the steady state.


Sign in / Sign up

Export Citation Format

Share Document