scholarly journals Fine-grained load balancing with traffic-aware rerouting in datacenter networks

Author(s):  
Tao Zhang ◽  
Yasi Lei ◽  
Qianqiang Zhang ◽  
Shaojun Zou ◽  
Juan Huang ◽  
...  

AbstractModern datacenters provide a wide variety of application services, which generate a mix of delay-sensitive short flows and throughput-oriented long flows, transmitting in the multi-path datacenter network. Though the existing load balancing designs successfully make full use of available parallel paths and attain high bisection network bandwidth, they reroute flows regardless of their dissimilar performance requirements. The short flows suffer from the problems of large queuing delay and packet reordering, while the long flows fail to obtain high throughput due to low link utilization and packet reordering. To address these inefficiency, we design a fine-grained load balancing scheme, namely TR (Traffic-aware Rerouting), which identifies flow types and executes flexible and traffic-aware rerouting to balance the performances of both short and long flows. Besides, to avoid packet reordering, TR leverages the reverse ACKs to estimate the switch-to-switch delay, thus excluding paths that potentially cause packet reordering. Moreover, TR is only deployed on the switch without any modification on end-hosts. The experimental results of large-scale NS2 simulations show that TR reduces the average and tail flow completion time for short flows by up to 60% and 80%, as well as provides up to 3.02x gain in throughput of long flows compared to the state-of-the-art load balancing schemes.

2021 ◽  
Author(s):  
Tao Zhang ◽  
Yasi Lei ◽  
Qianqiang Zhang ◽  
Shaojun Zou ◽  
Juan Huang ◽  
...  

Abstract Modern datacenters provide a wide variety of application services, which generate a mix of delay-sensitive short flows and throughput-oriented long flows, transmitting in the multi-path datacenter network. Though the existing load balancing designs successfully make full use of available parallel paths and attain high bisection network bandwidth, they reroute flows regardless of their dissimilar performance requirements. The short flows suffer from the problems of large queuing delay and packet reordering, while the long flows fail to obtain high throughput due to low link utilization and packet reordering. To address these inefficiency, we design a fine-grained load balancing scheme, namely TR (Traffic-aware Rerouting), which identifies flow types and executes flexible and traffic-aware rerouting to balance the performances of both short and long flows. Besides, to avoid packet reordering, TR leverages the reverse ACKs to estimate the switch-to-switch delay, thus excluding paths that potentially cause packet reordering. Moreover, TR is only deployed on the switch without any modification on end-hosts. The experimental results of large-scale NS2 simulations show that TR reduces the average and tail flow completion time for short flows by up to 60% and 80%, as well as provides up to 3.02x gain in throughput of long flows compared to the state-of-the-art load balancing schemes.


2022 ◽  
Author(s):  
weimin gao ◽  
huang jiawei ◽  
Li zhaoyi ◽  
zou shaojun ◽  
wang jianxin

Abstract Modern data center topologies often take the form of a multi-rooted tree with rich parallel paths to provide high bandwidth. However, various path diversities caused by traffic dynamics, link failures and heterogeneous switching equipments widely exist in production data center network. Therefore, the multi-path load balancer in data center should be robust to these diversities. Although prior fine-grained schemes such as RPS and Presto make full use of available paths, they are prone to experi-ence packet reordering problem under asymmetric topology. The coarse-grained solutions such as ECMP and LetFlow effectively avoid packet reordering, but easily lead to under-utilization of multiple paths. To cope with these inefficiencies, we propose a load balancing mechanism called PDLB, which adaptively adjusts flowcell granularity according to path diversity. PDLB increases flowcell granularity to alleviate packet reordering under large degrees of topology asymmetry, while reducing flowcell granularity to obtain high link utilization under small degrees of topology asymmetry. PDLB is only deployed on the sender without any modification on switch. We evaluate PDLB through large-scale NS2 simulations. The experimental results show that PDLB reduces the average flow completion time by up to ∼11-53% over the state-of-the-art load balancing schemes.


Author(s):  
Zhiyu Liu ◽  
Aqun Zhao ◽  
Mangui Liang

AbstractToday’s datacenter networks (DCNs) scale is rapidly increasing because of the wide deployment of cloud services and the rapid rise of edge computing. The bandwidth consumption and cost of a DCN are growing sharply with the extensions of network size. Thus, how to keep the traffic balanced is a key and challenging issue. However, the traditional load balancing algorithms such as Equal-Cost Multi-Path routing (ECMP) are not suitable for high dynamic traffic in cloud DCNs. In this paper, we propose a port-based forwarding load balancing scheduling (PFLBS) approach for Fat-tree based DCNs with some new features which can overcome the disadvantages of the existing load balancing methods in the following aspects. Firstly, we define a port-based source-routing addressing scheme, which decreases the switch complexity and makes the table-lookup operation unnecessary. Secondly, based on this addressing scheme, we proposed an effective routing mechanism which can obtain multiple available paths for flow scheduling based in Fat-tree. All the path information is saved in servers and each server only needs to maintain its own path information. Thirdly, we propose an efficient algorithm to implement large flows scheduling dynamically in terms of current link utilization ratio. This method is suitable for cloud DCNs and edge computing, which can reduce the complexity of the switches and the power consumption of the whole network. The experiment results indicate that the PFLBS approach has better performance compared with the ECMP, Hedera and MPTCP approaches, which decreases the flow completion time and improves the average throughput significantly. PFLBS is simple and can be implemented with a few signaling overheads.


2019 ◽  
Vol 22 (3) ◽  
pp. 365-380 ◽  
Author(s):  
Matthias Olthaar ◽  
Wilfred Dolfsma ◽  
Clemens Lutz ◽  
Florian Noseleit

In a competitive business environment at the Bottom of the Pyramid smallholders supplying global value chains may be thought to be at the whims of downstream large-scale players and local market forces, leaving no room for strategic entrepreneurial behavior. In such a context we test the relationship between the use of strategic resources and firm performance. We adopt the Resource Based Theory and show that seemingly homogenous smallholders deploy resources differently and, consequently, some do outperform others. We argue that the ‘resource-based theory’ results in a more fine-grained understanding of smallholder performance than approaches generally applied in agricultural economics. We develop a mixed-method approach that allows one to pinpoint relevant, industry-specific resources, and allows for empirical identification of the relative contribution of each resource to competitive advantage. The results show that proper use of quality labor, storage facilities, time of selling, and availability of animals are key capabilities.


Author(s):  
Jiawei Huang ◽  
Shiqi Wang ◽  
Shuping Li ◽  
Shaojun Zou ◽  
Jinbin Hu ◽  
...  

AbstractModern data center networks typically adopt multi-rooted tree topologies such leaf-spine and fat-tree to provide high bisection bandwidth. Load balancing is critical to achieve low latency and high throughput. Although the per-packet schemes such as Random Packet Spraying (RPS) can achieve high network utilization and near-optimal tail latency in symmetric topologies, they are prone to cause significant packet reordering and degrade the network performance. Moreover, some coding-based schemes are proposed to alleviate the problem of packet reordering and loss. Unfortunately, these schemes ignore the traffic characteristics of data center network and cannot achieve good network performance. In this paper, we propose a Heterogeneous Traffic-aware Partition Coding named HTPC to eliminate the impact of packet reordering and improve the performance of short and long flows. HTPC smoothly adjusts the number of redundant packets based on the multi-path congestion information and the traffic characteristics so that the tailing probability of short flows and the timeout probability of long flows can be reduced. Through a series of large-scale NS2 simulations, we demonstrate that HTPC reduces average flow completion time by up to 60% compared with the state-of-the-art mechanisms.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 41
Author(s):  
Tim Jurisch ◽  
Stefan Cantré ◽  
Fokke Saathoff

A variety of studies recently proved the applicability of different dried, fine-grained dredged materials as replacement material for erosion-resistant sea dike covers. In Rostock, Germany, a large-scale field experiment was conducted, in which different dredged materials were tested with regard to installation technology, stability, turf development, infiltration, and erosion resistance. The infiltration experiments to study the development of a seepage line in the dike body showed unexpected measurement results. Due to the high complexity of the problem, standard geo-hydraulic models proved to be unable to analyze these results. Therefore, different methods of inverse infiltration modeling were applied, such as the parameter estimation tool (PEST) and the AMALGAM algorithm. In the paper, the two approaches are compared and discussed. A sensitivity analysis proved the presumption of a non-linear model behavior for the infiltration problem and the Eigenvalue ratio indicates that the dike infiltration is an ill-posed problem. Although this complicates the inverse modeling (e.g., termination in local minima), parameter sets close to an optimum were found with both the PEST and the AMALGAM algorithms. Together with the field measurement data, this information supports the rating of the effective material properties of the applied dredged materials used as dike cover material.


Author(s):  
Anil S. Baslamisli ◽  
Partha Das ◽  
Hoang-An Le ◽  
Sezer Karaoglu ◽  
Theo Gevers

AbstractIn general, intrinsic image decomposition algorithms interpret shading as one unified component including all photometric effects. As shading transitions are generally smoother than reflectance (albedo) changes, these methods may fail in distinguishing strong photometric effects from reflectance variations. Therefore, in this paper, we propose to decompose the shading component into direct (illumination) and indirect shading (ambient light and shadows) subcomponents. The aim is to distinguish strong photometric effects from reflectance variations. An end-to-end deep convolutional neural network (ShadingNet) is proposed that operates in a fine-to-coarse manner with a specialized fusion and refinement unit exploiting the fine-grained shading model. It is designed to learn specific reflectance cues separated from specific photometric effects to analyze the disentanglement capability. A large-scale dataset of scene-level synthetic images of outdoor natural environments is provided with fine-grained intrinsic image ground-truths. Large scale experiments show that our approach using fine-grained shading decompositions outperforms state-of-the-art algorithms utilizing unified shading on NED, MPI Sintel, GTA V, IIW, MIT Intrinsic Images, 3DRMS and SRD datasets.


2021 ◽  
Vol 13 (16) ◽  
pp. 3065
Author(s):  
Libo Wang ◽  
Rui Li ◽  
Dongzhi Wang ◽  
Chenxi Duan ◽  
Teng Wang ◽  
...  

Semantic segmentation from very fine resolution (VFR) urban scene images plays a significant role in several application scenarios including autonomous driving, land cover classification, urban planning, etc. However, the tremendous details contained in the VFR image, especially the considerable variations in scale and appearance of objects, severely limit the potential of the existing deep learning approaches. Addressing such issues represents a promising research field in the remote sensing community, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose a Bilateral Awareness Network which contains a dependency path and a texture path to fully capture the long-range relationships and fine-grained details in VFR images. Specifically, the dependency path is conducted based on the ResT, a novel Transformer backbone with memory-efficient multi-head self-attention, while the texture path is built on the stacked convolution operation. In addition, using the linear attention mechanism, a feature aggregation module is designed to effectively fuse the dependency features and texture features. Extensive experiments conducted on the three large-scale urban scene image segmentation datasets, i.e., ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset, demonstrate the effectiveness of our BANet. Specifically, a 64.6% mIoU is achieved on the UAVid dataset.


Sign in / Sign up

Export Citation Format

Share Document