scholarly journals Temporal and spatial availability of cereal straw in Germany—Case study: Biomethane for the transport sector

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
André Brosowski ◽  
Ralf Bill ◽  
Daniela Thrän

Abstract Background By 2030, the German transport sector needs to achieve additional greenhouse gas savings of 67 million tonnes CO2-eq. and further progress requires swiftly implementable solutions. The fermentation of cereal straw is a promising option. Returning the digestate to the farmland can close agricultural cycles while simultaneously producing biomethane. The world's first large-scale, mono-digestion plant for straw is operational since 2014. The temporal and spatial biomass availability is a key issue when replicating this concept. No detailed calculations on this subject are available, and the strategic relevance of biomethane from straw in the transport sector cannot be sufficiently evaluated. Methods To assess the balance of straw supply and use, a total of 30 data sets are combined, taking into account the cultivation of the five most important cereal types and the straw required for ten animal species, two special crops and 12 industrial uses. The data are managed at district level and presented for the years 2010 to 2018. In combination with high-resolution geodata, the results are linked to actual arable fields, and the availability of straw throughout the country is evaluated using a GIS. Results During the analysis period and based on the assumption that in case of fermentation up to 70% of the straw can be utilised, the mobilisable technical biomass potential for future biomethane production is between 13.9–21.5 Tg fm a−1. The annual potential fluctuates considerably due to weather anomalies. The all-time maximum in 2014 and the minimum for the last 26 years in 2018 are separated by just 4 years and a difference of 7.6 Tg fm. However, large parts of the potential are concentrated only in a few regions and biomethane from straw could provide 57–145 PJ of a low-emission fuel, saving 3–12 Tg CO2-eq. in case of full exploitation. Conclusion Despite the strong fluctuations and high uncertainties, the potential is sufficient to supply numerous plants and to produce relevant quantities of biomethane even in weak years. To unlock the potential, the outcomes should be evaluated and discussed further with stakeholders in the identified priority regions.

2020 ◽  
Author(s):  
André Brosowski ◽  
Ralf Bill ◽  
Daniela Thrän

Abstract Background: By 2030, the German transport sector needs to achieve additional greenhouse gas savings of 67 million tonnes CO2-eq. and further progress requires swiftly implementable solutions. The fermentation of cereal straw is a promising option. Returning the digestate to the farmland can close agricultural cycles while simultaneously producing biomethane. The world's first large-scale, mono-digestion plant for straw is operational since 2014. The temporal and spatial biomass availability is a key issue when replicating this concept. No detailed calculations on this subject are available, and the strategic relevance of biomethane from straw in the transport sector cannot be sufficiently evaluated.Methods: To assess the balance of straw supply and use, a total of 30 data sets are combined, taking into account the cultivation of the five most important cereal types and the straw required for ten animal species, two special crops and twelve industrial uses. The data are managed at district level and presented for the years 2010 to 2018. In combination with high-resolution geodata, the results are linked to actual arable fields, and the availability of straw throughout the country is evaluated using a GIS.Results: During the analysis period and based on the assumption that in case of fermentation up to 70 % of the straw can be utilised, the mobilisable technical biomass potential for future biomethane production is between 13.9–21.5 Tg fm a-1. The annual potential fluctuates considerably due to weather anomalies. The all-time maximum in 2014 and the minimum for the last 26 years in 2018 are separated by just four years and a difference of 7.6 Tg fm. However, large parts of the potential are concentrated only in a few regions and biomethane from straw could provide 57–145 PJ of a low-emission fuel, saving 3–12 Tg CO2-eq. in case of full exploitation.Conclusion: Despite the strong fluctuations and high uncertainties, the potential is sufficient to supply numerous plants and to produce relevant quantities of biomethane even in weak years. To unlock the potential, the outcomes should be evaluated and discussed further with stakeholders in the identified priority regions.


2020 ◽  
Author(s):  
André Brosowski ◽  
Ralf Bill ◽  
Daniela Thrän

Abstract Background: Half of the UN climate target for 2030 has been achieved and further progress requires swiftly implementable solutions. In this context, the fermentation of cereal straw is a promising option. Returning the digestate to the farmland can close agricultural cycles while simultaneously producing biomethane for the transport sector. The world's first large-scale, mono-digestion plant for straw is operational since 2014. The temporal and spatial biomass availability is a key issue when replicating this concept. No detailed calculations on this subject are available, and the strategic relevance of biomethane from straw in the transport sector cannot be sufficiently evaluated.Methods: To assess the balance of straw supply and use, a total of 30 data sets are combined, taking into account the cultivation of the five most important cereal types and the straw required for ten animal species, two special crops and twelve industrial uses. The data are managed at district level and presented for the years 2010 to 2018. In combination with high-resolution geodata, the results are linked to actual arable fields, and the availability of straw throughout the country is evaluated using a GIS.Results: During the analysis period, the mobilisable potential for future biomethane production is between 13.9–21.5 Tg fm a-1; this is up to 62 % higher than the previously known level. The annual potential fluctuates considerably due to weather anomalies. The all-time maximum in 2014 and the minimum for the last 26 years in 2018 are separated by just four years and a difference of 7.6 Tg fm. However, large parts of the potential are concentrated only in a few regions and liquefied biomethane could fully cover the fuel required for vessels, and up to a quarter of that for heavy goods vehicles. Up to 11.3 Tg CO2-eq. could be saved, reducing the difference to achieve the UN climate target by 3.7 %.Conclusion: Despite the strong fluctuations, the potential is sufficient to supply numerous plants and to produce relevant quantities of liquefied biomethane even in weak years. To unlock the potential, the outcomes should be discussed further with stakeholders in the identified priority regions.


2020 ◽  
Author(s):  
André Brosowski ◽  
Ralf Bill ◽  
Daniela Thrän

Abstract Background: By 2030, the transport sector needs to achieve additional greenhouse gas savings of 67 million tonnes CO2-eq. and further progress requires swiftly implementable solutions. The fermentation of cereal straw is a promising option. Returning the digestate to the farmland can close agricultural cycles while simultaneously producing biomethane. The world's first large-scale, mono-digestion plant for straw is operational since 2014. The temporal and spatial biomass availability is a key issue when replicating this concept. No detailed calculations on this subject are available, and the strategic relevance of biomethane from straw in the transport sector cannot be sufficiently evaluated. Methods: To assess the balance of straw supply and use, a total of 30 data sets are combined, taking into account the cultivation of the five most important cereal types and the straw required for ten animal species, two special crops and twelve industrial uses. The data are managed at district level and presented for the years 2010 to 2018. In combination with high-resolution geodata, the results are linked to actual arable fields, and the availability of straw throughout the country is evaluated using a GIS. Results: During the analysis period, the mobilisable technical biomass potential for future biomethane production is between 13.9–21.5 Tg fm a-1; this is up to 62 % higher than the previously known level. The annual potential fluctuates considerably due to weather anomalies. The all-time maximum in 2014 and the minimum for the last 26 years in 2018 are separated by just four years and a difference of 7.6 Tg fm. However, large parts of the potential are concentrated only in a few regions and biomethane from straw could provide up to 145 PJ of a low-emission fuel. This would be associated with a greenhouse gas mitigation of roughly twelve million tonnes CO2-eq., which corresponds to around one-sixth of the climate target for the entire sector. Conclusion: Despite the strong fluctuations, the potential is sufficient to supply numerous plants and to produce relevant quantities of biomethane even in weak years. To unlock the potential, the outcomes should be discussed further with stakeholders in the identified priority regions.


2003 ◽  
Vol 1836 (1) ◽  
pp. 132-142 ◽  
Author(s):  
Brian L. Smith ◽  
William T. Scherer ◽  
James H. Conklin

Many states have implemented large-scale transportation management systems to improve mobility in urban areas. These systems are highly prone to missing and erroneous data, which results in drastically reduced data sets for analysis and real-time operations. Imputation is the practice of filling in missing data with estimated values. Currently, the transportation industry generally does not use imputation as a means for handling missing data. Other disciplines have recognized the importance of addressing missing data and, as a result, methods and software for imputing missing data are becoming widely available. The feasibility and applicability of imputing missing traffic data are addressed, and a preliminary analysis of several heuristic and statistical imputation techniques is performed. Preliminary results produced excellent performance in the case study and indicate that the statistical techniques are more accurate while maintaining the natural characteristics of the data.


In Cloud based Big Data applications, Hadoop has been widely adopted for distributed processing large scale data sets. However, the wastage of energy consumption of data centers still constitutes an important axis of research due to overuse of resources and extra overhead costs. As a solution to overcome this challenge, a dynamic scaling of resources in Hadoop YARN Cluster is a practical solution. This paper proposes a dynamic scaling approach in Hadoop YARN (DSHYARN) to add or remove nodes automatically based on workload. It is based on two algorithms (scaling up/down) which are implemented to automate the scaling process in the cluster. This article aims to assure energy efficiency and performance of Hadoop YARN’ clusters. To validate the effectiveness of DSHYARN, a case study with sentiment analysis on tweets about covid-19 vaccine is provided. the goal is to analyze tweets of the people posted on Twitter application. The results showed improvement in CPU utilization, RAM utilization and Job Completion time. In addition, the energy has been reduced of 16% under average workload.


Author(s):  
Nat Praseeratasang ◽  
Rapeepan Pitakaso ◽  
Kanchana Sethanan ◽  
Sasitorn Kaewman ◽  
Paulina Golinska-Dawson

This article aims to resolve a particular production planning and workforce assignment problem. Many production lines may have different production capacities while producing the same product. Each production line is composed of three production stages, and each stage requires different periods of times and numbers of workers. Moreover, the workers will have different skill levels which can affect the number of workers required for production line. The number of workers required in each farm also depends on the amount of pigs that it is producing. Production planning must fulfill all the demands and can only make use of the workers available. A production plan aims to generate maximal profit for the company. A mathematical model has been developed to solve the proposed problem, when the size of problem increases, the model is unable to resolve large issues within a reasonable timeframe. A metaheuristic method called adaptive large-scale neighborhood search (ALNS) has been developed to solve the case study. Eight destroy and four repair operators (including ant colony optimization based destroy and repair methods) have been presented. Moreover, three formulas which are used to make decisions for acceptance of the newly generated solution have been proposed. The present study tested 16 data sets, including the case study. From the computational results of the small size of test instances, ALNS should be able to find optimal solutions for all the random data sets in much less computational time compared to commercial optimization software. For medium and larger test instance sizes, the findings of the heuristics were 0.48% to 0.92% away from the upper bound and generated within 480–620 h, in comparison to the 1 h required for the proposed method. The Ant Colony Optimization-based destroy and repair method found solutions that were 0.98 to 1.03% better than the original ALNS.


2021 ◽  
Vol 13 (4) ◽  
pp. 658
Author(s):  
Sergei Badulin ◽  
Andrey Kostianoy ◽  
Pavel Shabanov ◽  
Vitali Sharmar ◽  
Vika Grigorieva ◽  
...  

For decades, satellite altimetry is providing reliable data on the sea level, surface currents, tides, planetary and wind waves and sea ice. We propose a potential enhancement of collecting special data subsets for a better temporal and spatial sampling of dynamics of the Sub-Polar seas. We show that peculiarities of the orbits of the TOPEX/Poseidon and Jasons’ missions generate a regular grid of crossovers which locations are fixed in space and time of the orbit cycles. Two types of these special crossovers are specified: self-crossovers (SC) occurring as intersections of tracks of the same satellite and inter-crossovers (IC) appearing during the phases of interleaved orbits when tracks of two different satellites are crossing. The time delay between two consecutive measurements in the high-latitude sites is less than 2 h for SC and 1 h for IC, thus providing a ground for monitoring large-scale currents (including current direction) and wind waves. The sets of the special crossovers can be regarded as networks of virtual ocean buoys. The Norwegian Sea case study illustrates the value of the special crossovers for the Sub-Polar seas and the feasibility of building the networks of SC and IC in other areas of the World Ocean.


2018 ◽  
Vol 34 (1) ◽  
pp. 57-72 ◽  
Author(s):  
Michael David Berry ◽  
John Sessions

Abstract. This article presents an analysis of transportable biomass conversion facilities to evaluate the conceptual and economic viability of a highly mobile and modular biomass conversion supply chain in the Pacific Northwest of the United States. The goal of this work is to support a broader effort to more effectively and sustainably use residual biomass from commercial harvesting operations that are currently piled and burned as part of site preparation. A structural representation is first developed to include sources of biomass feedstock, distributed preprocessing hubs (centralized landings), and centralized processing facilities (biomass to product conversion sites) to produce desired products and byproducts. A facility costing model was developed to evaluate potential economics of scale, which then informed the optimization study. A mixed integer linear programming model was developed to characterize, evaluate, and optimize biomass collection, extraction, logistics, and facility placement over a regional landscape from a strategic level to evaluate the mobility concept. The objective was to minimize supply chain operational costs in order to quantify financial advantages and identify challenges of the proposed system modularity and mobility. A Lakeview, Oregon case study was evaluated with an assumed modular biochar facility servicing the region. In particular, we review economies of scale, mobility, energy costs, and biomass availability tradeoffs. This analysis points towards a modular system design of movement frequency between 1 to 2 years being most viable in the conditions evaluated. It was found that the impact of plant movement, scale, and biomass availability can increase supply chain costs by $11/BDMT ($10/BDT), $33/BDMT ($30/BDT), and $22/BDMT ($20/BDT) above the base case cost of $182/BDMT ($165/BDT) for a large-scale facility [45,000 BDMT yr-1(50,000 BDT yr-1)]in the conditions evaluated. Additionally, potential energy cost savings of a non-mobile modular stationary site as compared to one which utilizes off-grid electrical powers about $11/BDMT ($10/BDT) for a biochar facility. From the cases evaluated, a large-scale plant with limited mobility would be preferred under low availability of biomass conditions, whereas a stationary grid-connected plant would be more cost effective under higher availability conditions. Results depend greatly on the region, assumed harvest schedule, biomass composition, and governing biomass plant assumptions. Keywords: Biomass products, Biomass supply, Facility location, Mixed integer programming, Strategic planning, Transportable plants.


Sign in / Sign up

Export Citation Format

Share Document