scholarly journals Shear Resistance Prediction of Post-fire Reinforced Concrete Beams Using Artificial Neural Network

Author(s):  
Bin Cai ◽  
Long-Fei Xu ◽  
Feng Fu

Abstract In this paper, a prediction method based on artificial neural network was developed to rapidly determine the residual shear resistance of reinforced concrete (RC) beams after fire. Firstly, the temperature distribution along the beam section was determined through finite element analysis using software ABAQUS. A residual shear strength calculation model was developed and validated using the test data. Using this model, 384 data entries were derived for training and testing. The input layer of neural network involved parameters of beam height, beam width, fire exposure time, cross-sectional area of stirrup, stirrup spacing, concrete strength, and concrete cover thickness. The output was the shear resistance of RC beams. It was found that use of BP neural network could precisely predict the post-fire shear resistance of RC beams. The predicted data were highly consistent with the target data. Thus, this is a novel method for computing post-fire shear resistance of RC beams. Using this new method, further investigation was also made on the effects of different parameters on the shear resistance of the beams.

2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mohammad Nikoo ◽  
Babak Aminnejad ◽  
Alireza Lork

In this article, 140 samples with different characteristics were collected from the literature. The Feed Forward network is used in this research. The parameters f’c (MPa), ρf (%), Ef (GPa), a/d, bw (mm), d (mm), and VMA are selected as inputs to determine the shear strength in FRP-reinforced concrete beams. The structure of the artificial neural network (ANN) is also optimized using the bat algorithm. ANN is also compared to the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. Finally, Nehdi et al.’s model, ACI-440, and BISE-99 equations were used to evaluate the models’ accuracy. The results confirm that the bat algorithm-optimized ANN is more capable, flexible, and provides superior precision than the other three models in determining the shear strength of the FRP-reinforced concrete beams.


2021 ◽  
Vol 63 (5) ◽  
pp. 430-435
Author(s):  
Osman Atalay ◽  
Ihsan Toktas

Abstract Today, fluid transportation via pipes can be found in many sectors. Therefore, safe fluid transportation possesses critical importance. While working, transportation pipes are exposed to unwanted loads that culminate in stresses which cause deformation on the part geometry especially in sharp corners, holes or sudden cross-section change areas considered as notched. The notch effect parameter is considered in the mechanical design formulas. This study is interested in the notch factor that is estimated for a cylinder which undergoes an inner pressure. Some users can use false numerical values due to misreading or lack of attention. Because of this reason, graphs were converted to the numerical value by using computer software. In this study, Peterson’s chart was accepted as scientifically valid. Stress concentration factors were obtained by using four other approaches. These are regression, analytical, artificial neural network and finite element analysis. Among these models, high accuracy values were given by the artificial neural network model.


2012 ◽  
Author(s):  
Norhisham Bakhary

Kertas kerja ini memaparkan kajian berkenaan keberkesanan Artificial Neural Network (ANN) dalam mengenal pasti kerosakan di dalam struktur. Data dari getaran seperti frekuensi semula jadi dan mod bentuk digunakan sebagai data masukan bagi ANN untuk meramalkan lokasi dan tahap kerosakan bagi struktur lantai. Analisis unsur terhingga (Finite Element Analysis) telah digunakan untuk memperoleh ciri–ciri dinamik bagi struktur–struktur rosak dan tidak rosak untuk ‘melatih’ model ‘neural network’. Senario kerosakan yang berbeza disimulasikan dengan mengurangkan kekukuhan elemen pada lokasi yang berbeza sepanjang struktur tersebut. Berbagai kombinasi data masukan bagi mod yang berbeza telah digunakan untuk memperolehi model ANN yang terbaik. Hasil kajian ini menunjukkan ANN mampu memberikan keputusan yang baik dalam meramal kerosakan pada struktur lantai tersebut. Kata kunci: Ramalan kerosakan struktur, Artificial Neural Network This paper investigates the effectiveness of artificial neural network (ANN) in identifying damages in structures. Global (natural frequencies) and local (mode shapes) vibration–based data has been used as the input to ANN for location and severity prediction of damages in a slab–like structure. A finite element analysis has been used to obtain the dynamic characteristics of intact and damaged structure to train the neural network model. Different damage scenarios have been introduced by reducing the local stiffness of the selected elements at different locations along the structure. Several combinations of input variables in different modes have been used in order to obtain a reliable ANN model. The trained ANN model is validated using laboratory test data. The results show that ANN is capable of providing acceptable result on damage prediction of tested slab structure. Key words: Structural damage detection, artificial neural network


Sign in / Sign up

Export Citation Format

Share Document