scholarly journals Useful parameters for the motion analysis of facial skin care in Japanese women

2020 ◽  
Vol 39 (1) ◽  
Author(s):  
Shingo Sakai ◽  
Ruako Takatori ◽  
Mika Nomura ◽  
Kuniaki Uehara

Abstract Background Facial skin care (FSC) is an important routine for Japanese women. Hand motions during FSC physically affect psychological state. However, it is very difficult to evaluate hand motions during personal and complex FSC. The objective of this study was to find out objective and quantitative parameters for hand motions during facial skin care (FSC). Women who enjoy and soothe during FSC (Enjoyment group (E group), n = 20) or not (non-enjoyment group (NE group), n = 19) were recruited by an advance questionnaire. The same lotion, emulsion, and cream were provided to all subjects, and they used sequentially in the same way as the women’s daily FSC. The motion of the marker on the back side of the right middle finger during FSC was tracked by a motion capture system. The heart rate variability (HRV) was also measured before and after FSC for evaluating psychological effect. Results The averaged acceleration (Avg. ACC), approximate entropy (ApEn), and power law scaling exponent (Rest γ) of the cumulative duration of slow motion from the sequential data of acceleration were evaluated. Compared to the NE group, the E group showed a lower Avg. ACC when using emulsion (p = 0.005) and cream (p = 0.007), a lower ApEn when using emulsion (p = 0.003), and a lower Rest γ (p = 0.024) when using all items, suggesting that compared to the NE group, the E group had more tender and regular motion, and sustainable slow motions, especially in the use of emulsion. In the E group, the low/high-frequency component of HRV decreased significantly after FSC, suggesting suppression of sympathetic activity (p = 0.045). NE group did not. For all subjects, ApEn and Rest γ showed significantly positive correlation with the increase in the low/high-frequency component of HRV after FSC (p < 0.01). ApEn showed significantly negative correlation with the increase in the high-frequency component of HRV after FSC (p < 0.05). Avg. ACC did not show significant correlation with them. These results suggested that the behavior of FSC influences the autonomic nerve system. Conclusions ApEn and Rest γ are useful parameters for evaluating quality of hand motions during FSC.

Author(s):  
Kazufumi Takahashi ◽  
Xiaoming Wang ◽  
Daiyu Shginohara ◽  
Kenji Imai

Background: Bronchial contraction and dilation is thought to be caused by non-adrenergic non-cholinergic nerves. Objective: To investigate the effects of low-frequency (1-5 Hz) and high frequency (50-100 Hz) electric acupuncture (EA) stimulation on bronchial dilation. Design: Prospective, single-center study. Setting: Teikyo Heisei University Subjects: Seventeen healthy male adults Randomization: We randomly assigned subjects to 2-Hz EA and 100-Hz EA groups in a crossover trial. The washout period was 2 weeks. Intervention: Both groups underwent a respiratory function test, followed by a 5-minute rest, followed a 5-minute rest or EA stimulation, followed by a 5- min rest. Heart rate variability was measured at rest, followed by another respiratory function test. Acupuncture was delivered near the cervical ganglia at the level of the sixth cervical vertebra on the left side. EA stimuli were set to 2-Hz or 100-Hz, and stimulation intensity was set to a level where no pain was felt. Main outcome measures: Spirometry (forced vital capacity, forced expiratory volume in 1 s, and maximum respiratory flow), autonomic nerve activity (low-frequency component, high-frequency component, and their ratio), and heart rate variability. Results: Heart rate variability analysis showed significant differences in heart rate between the 2-Hz EA and 100-Hz EA groups. The 2-Hz EA group showed a significant increase in HF. Conclusions: 2-Hz EA stimulation resulted in decreased heart rate and increased HF during stimulation. This may be more effective for regulation of the autonomic nerves of the cardiopulmonary system than 100-Hz EA stimulation. Future studies are required to confirm our findings.


2006 ◽  
Vol 321-323 ◽  
pp. 968-971
Author(s):  
Won Su Park ◽  
Sang Woo Choi ◽  
Joon Hyun Lee ◽  
Kyeong Cheol Seo ◽  
Joon Hyung Byun

For improving quality of a carbon fiber reinforced composite material (CFRP) by preventing defects such as delamination and void, it should be inspected in fabrication process. Novel non-contacting evaluation technique is required because the transducer should be contacted on the CFRP in conventional ultrasonic technique during the non-destructive evaluation and these conventional contact techniques can not be applied in a novel fiber placement system. For the non-destructive evaluation of delamination in CFRP, various methods for the generation and reception of laser-generated ultrasound are applied using piezoelectric transducer, air-coupled transducer, wavelet transform technique etc. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Air-coupled transducer was tried to be adopted in reception of laser-generated guided wave generated by using linear slit array in order to generate high frequency guided wave with a frequency of 1.1 MHz. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer and linear slit array. Transmitted laser-generated ultrasonic wave was received on back-wall and its frequency was analyzed to establish inspecting technique to detect delamination by non-contact ultrasonic method. In a frequency spectrum analysis, intensity ratio of low frequency and center frequency was approvable parameter to detect delamination.


Author(s):  
Hakaru Tamukoh ◽  
Hideaki Kawano ◽  
Noriaki Suetake ◽  
Masatoshi Sekine ◽  
Byungki Cha ◽  
...  

2004 ◽  
Vol 97 (6) ◽  
pp. 2121-2131 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Kei Masani ◽  
Tetsuo Fukunaga

The study examined the hypothesis that altered synergistic activation of the knee extensors leads to cyclic modulation of the force fluctuations. To test this hypothesis, the force fluctuations were investigated during sustained knee extension at 2.5% of maximal voluntary contraction force for 60 min in 11 men. Surface electromyograms (EMG) were recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The SD of force and average EMG (AEMG) of each muscle were calculated for 30-s periods during alternate muscle activity. Power spectrum of force was calculated for the low- (≤3 Hz), middle- (4–6 Hz), and high-frequency (8–12 Hz) components. Alternate muscle activity was observed between RF and the set of VL and VM muscles. The SD of force was not constant but variable due to the alternate muscle activity. The SD was significantly greater during high RF activity compared with high VL and VM activity ( P < 0.05), and the correlation coefficient between the SD and AEMG was significantly greater in RF [0.736 (SD 0.095), P < 0.05] compared with VL and VM. Large changes were found in the high-frequency component. During high RF activity, the correlation coefficient between the SD and high-frequency component [0.832 (SD 0.087)] was significantly ( P < 0.05) greater compared with other frequency components. It is suggested that modulations in knee extension force fluctuations are caused by the unique muscle activity in RF during the alternate muscle activity, which augments the high-frequency component of the fluctuations.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1591
Author(s):  
Bo Pang ◽  
Feng Li ◽  
Hui Dai ◽  
Heng Nian

High frequency resonance (HFR) is a subsistent problem which affects the operation of the voltage source converter (VSC) connected to the parallel compensated grid. The appearance of HFR introduces a significant high frequency component in the grid voltage, thereby the operation of VSC system will be seriously affected. For enhancing the operation capability of VSC system, an HFR damping method based on the voltage feedforward control is proposed in this paper, which can reshape the VSC system impedance effectively in a wideband range. Besides, different with the existing HFR damping methods, the proposed method introduces a correction factor instead of the series virtual impedance with fixed value, so that the effect of impedance reshaping is irrelevant to the parameters of controlled object. In addition, this paper analyzes the fundamental control performance of VSC system after equipping the proposed method, for verifying that the proposed method will not worsen the fundamental control. Experimental results are given to validate the effectiveness of the proposed damping method.


2018 ◽  
Vol 10 (2) ◽  
pp. 62-65
Author(s):  
Teruhisa Komori

To clarify the physiological and psychological effects of deep breathing, the effects of extreme prolongation of expiration breathing (Okinaga) were investigated using electroencephalogram (EEG) and electrocardiogram (ECG). Participants were five male Okinaga practitioners in their 50s and 60s. Participants performed Okinaga for 31 minutes while continuous EEG and ECG measurements were taken. After 16 minutes of Okinaga, and until the end of the session, the percentages of theta and alpha 2 waves were significantly higher than at baseline. After 20 minutes, and until the end of the session, the percentage of beta waves was significantly lower than at baseline. The high frequency component of heart rate variability was significantly lower after 12 minutes of Okinaga and lasted until 23 minutes. The low frequency/high frequency ratio was significantly lower after 18 minutes of Okinaga and until the end of the session. Okinaga produced relaxation, suggesting that deep breathing may relieve anxiety. However, study limitations include potential ambiguity in the interpretation of the low frequency/high frequency ratio, the small sample, and the fact that EEG was measured only on the forehead.


Sign in / Sign up

Export Citation Format

Share Document