scholarly journals Critical assessment of day time traffic noise level at curbside open-air microenvironment of Kolkata City, India

Author(s):  
Anirban Kundu Chowdhury ◽  
Anupam Debsarkar ◽  
Shibnath Chakrabarty
Author(s):  
Regina Gražulevičienė ◽  
Inga Bendokienė

The aim of the study was to assess the influence of truck traffic on acoustic pollution in two Kaunas districts crossed by highways‐ Eiguliai and Šilainiai. Composition of traffic flow and noise measurements were conducted near the main streets and national highways that cross the districts. GIS and statistical software SPSS 12.01 were used for the data analysis. The study results showed that mean noise level near the main streets was 70 dB(A) in the daytime,‐ 68.6 dB(A) in the evening and at night it was 61.1 dB(A) in Eiguliai, and in Šilainiai it was 67 dB(A), 65 dB(A) and 58 dB(A), correspondingly. On the highways, crossing the districts, heavy vehicles compose about 3 times higher part of total traffic flow during the day and about 2 times in the evening compared to other main streets. The noise level depended on the traffic flow and correlation coefficient fluctuated from 0.77 to 0.85. The modelling of traffic flow showed, that the increase of trucks proportion by 2 percent would increase the traffic noise by 1.1 dB(A) in the streets with traffic flow of 300 veh./hour or more, and by 1.8 dB(A) with traffic flow of 200 veh./hour or less. Our findings suggest that the influence of heavy vehicles on acoustic pollution is higher in the districts with lower traffic flow. Santrauka Tyrimo tikslas – nustatyti krovininio autotransporto įtaką akustinei taršai Kauno mikrorajonuose, kuriuos kerta respublikinės reikšmės magistralės – Islandijos plentas ir vakarinis lankstas. Aplinkos triukšmo lygis ir transporto srautų intensyvumas Eigulių ir Šilainių seniūnijoje buvo matuotas 34 taškuose – dieną, vakare ir naktį. Duomenims apdoroti taikyta geografinių informacinių (GIS) sistemų technologijos, SPSS 12.0.1 ir Statistica 15 statistinės analizės paketai. Tyrimų rezultatai: vidutinis ekvivalentinis triukšmo lygis Eigulių seniūnijoje dieną prie pagrindinių gatvių siekė 70 dBA, vakare – 68,6 dBA, o naktį – 61,1 dBA ir iš esmės nesiskyrė nuo Šilainių seniūnijos, atitinkamai 67 dBA, 65 dBA ir 58 dBA. Magistraliniuose keliuose, kertančiuose Eigulių ir Šilainių seniūnijas, vidutinis transporto srautų intensyvumas dieną ir vakare buvo 5 kartus, naktį 6 kartus didesnis nei vidutinis srautų intensyvumas pagrindinėse gatvėse tuo pačiu metu, o krovininio autotransporto dalis dieną 3 kartus, o vakare 2 kartus viršijo vidutinius pagrindinių gatvių srautus. Nustatyta sąsaja tarp transporto srautų intensyvumo ir triukšmo lygio: Eigulių seniūnijos dienos koreliacijos koeficientas buvo 0,85, vakaro ir nakties – 0,83, o Šilainių seniūnijos – atitinkamai 0,78, 0,77 ir 0,80. Transporto srautų sudėties modeliavimo duomenimis, padidėjus krovininio transporto proporcijai 2 %, gatvėse, kuriose transporto srautas didesnis nei 300 aut./val., triukšmo lygis padidėtų 1,1 dBA, o kur transporto srautas mažesnis nei 200 aut./val., triukšmo lygis padidėtų 1,8 dBA (koreliacijos koeficientas – 0,63). Krovininio transporto įtaka akustinei taršai didesnė mikrorajonuose, kuriuose transporto srautai nedideli. Резюме Целью данной работы было изучить влияние грузового автотранспорта на акустическое загрязнение в микрорайонах города Каунаса, которые пересекают трассы государственного значения. Это шоссе Исландиос и объезд Вакаринис. Состав транспортного потока определялся и уровень шума измерялся около главных улиц микрорайонов. Результаты исследования показали, что средний уровень шума днем был 70 dBA, вечером – 68,6 dBA, ночью – 61,1 dBA. На трассах государственного значения, пересекающих микрорайоны, по сравнению с другими улицами потоки грузовых автомобилей были в 3 раза больше днем и 2 раза больше вечером. Установлена зaвисимость между величиной транспортного потока и шума (r = 0,77–0,85). Моделирование состава транспортного потока показало, что при увеличении на улицах грузового транспорта на 2% с 300 авт./час и больше шум увеличивается на 1,1 dBA, а при количестве грузового транспорта, составляющем 200 авт./час и меньше, шум возрастает на 1,8 dBA. Влияние грузового автотранспорта на акустическое загрязнение больше в микрорайонах с небольшим транспортным потоком.


2018 ◽  
Vol 19 (12) ◽  
pp. 43-48
Author(s):  
Wojciech Ambroszko ◽  
Krzysztof Miksiewicz

The article discusses issues related to noise in relation to road safety. The work concerns issues of broadly conducted noise level research in Wrocław and in several cities of the Lower Silesia Voivodship. This study contains the results of noise level tests and their overview at one of the intersections in Wrocław.


2022 ◽  
Vol 30 (1) ◽  
pp. 22-29
Author(s):  
Tomas Vilniškis ◽  
Andrej Naimušin ◽  
Tomas Januševičius

Transport noise is a serious problem in cities and has a negative impact on both health and economics. In addition to the aforementioned unnoticed health effects, traffic noise has also been identified as one of the leading causes of sleep disorders, annoyance and negative cardiovascular effects. This research consists of three parts: part one involves onsite measurements of traffic noise in Trakai town; part two simulates traffic noise at different average vehicle speeds; part three assesses the number of people affected by traffic noise. The carried-out simulation has demonstrated that the noise level changes very slightly at different average vehicle speeds. It should be noticed that more noise is generated at average vehicle speed of 30 km/h rather than at 50 km/h. The assessment of the annoyance level has disclosed that an average vehicle speed of 30 km/h should cause the highest level of annoyance (highest – 26.8%).


2021 ◽  
Author(s):  
WAZIR ALAM ◽  
Ramtharmawi Nungate

Abstract Noise pollution assessment was carried out in selected traffic junctions of Imphal city of Manipur, India. The noise pollution assessment was carried out using noise parameters and indices such as L10, L50, L90, Leq for selected traffic junctions during the different periods of the day, i.e., morning, noon, and evening hours. The study of equivalent noise level (Leq), noise parameters, and various noise indices have enabled the evaluation of the overall traffic noise environment of the city. The traffic noise indices such as traffic noise index (TNI), noise climate (NC), traffic noise pollution level (LNP), noise exposure index (NEI) along with day time (LD), night time (LN) average, and day-night (Ldn) noise levels were assessed for the selected traffic junctions. Moreover, spatial noise mapping was carried out using the geostatistical interpolation technique to evaluate the changes of traffic noise scenarios during the different time zones of the day. The Leq values in few traffic junctions exceeded the required noise standards. The study shows equivalent noise level ranging between 52.2–69.9 dB(A) during the morning (7–10 am), 52.4–69.3 dB(A) during noon (12 noon-2 pm), and 54.6–71.1 dB(A) during the evening (4–7 pm) hours, respectively.


2018 ◽  
Vol 250 ◽  
pp. 02006
Author(s):  
Zaiton Haron ◽  
Darus Nadirah ◽  
Supandi Mohamad Afif ◽  
Yahya Khairulzan ◽  
Nordiana Mashros ◽  
...  

Transverse rumble strips (TRS) are commonly being installed to alert the drivers through sound and vibration effects. The sound produced affects the existing traffic noise level which caused noise annoyance to the nearby residents. This study aims to assess the traffic noise due to TRS at residential areas by determining the roadside noise levels, traffic and road characteristics and evaluating the relationship between these parameters. Middle overlapped (MO), middle layer overlapped (MLO) and raised rumbler (RR) TRS profiles with same thickness were selected. The measurements of roadside noise levels and skid resistance were conducted using sound level meter (SLM) and British pendulum tester (BPT) respectively. Traffic characteristics were evaluated using previous data measured using automatic traffic counter (ATC). In overall, MLO produced highest roadside noise levels with increase of 20.5dBA from baseline. Generally, the increase of roadside noise level due to TRS is strong with speed, weak to medium with skid resistance of TRS and no relationship with traffic volume. Based on three TRS profile types, MLO is not suitable to be installed on the roadways adjacent to the residential areas as the increase of roadside noise level is significant which is more than 5dBA compared to MO and RR.


Behaviour ◽  
2013 ◽  
Vol 150 (6) ◽  
pp. 569-584 ◽  
Author(s):  
Fernando Vargas-Salinas ◽  
Adolfo Amézquita

Acoustically communicating species have evolved adaptations that allow them to transmit information and overcome signal masking where their habitat is disturbed by anthropogenic noise. To investigate whether calling behaviour or spatial distribution is related to road traffic noise we studied the poison frog Andinobates bombetes in a mid-elevation forest remnant that has been exposed to heavy traffic noise throughout more than four decades. To test whether frogs avoid call during noise episodes generated by passing trucks, we compared background noise levels between calling and non-calling times. To test whether traffic noise is correlated with frogs spatial distribution, we measured frog abundance, ambient noise, and environmental covariates throughout a set of 24 sampling plots between 15 and 300 m from two forest edges, one bordered by the road and another one by an agricultural field. Frogs called more often when traffic noise level was lower. Frogs abundance was only marginally correlated with distance to noisy edges but was predictable from the abundance of bromeliad tanks, an alleged limiting resource for their reproduction. Apparently, to avoid calling during episodes with higher noise level allowed frogs to reduce the detrimental masking effects of anthropogenic noise; if so, it would explain why frog distribution is poorly correlated with distance to the noisy road.


1970 ◽  
Vol 42 (4) ◽  
pp. 435-440
Author(s):  
Tayyaba Aftab ◽  
Farzana Bashir ◽  
Tahira Shafiq

A road traffic noise study was conducted in Lahore at 18 busy places of high traffic flow in peak working hours of the day. It has been found that the day time average noise level has crossed the permissible limit of 85dB(A) at 90% busy points in the city. The maximum average noise level recorded in Lahore was 104 dB(A). This high level attributed to vehicular traffic specially auto rickshaw with ineffective silencers (without filters) and frequent use of the pressure horns by buses, wagons and trucks etc. The findings of the survey provide enough baseline data for engineering controls and interim legislation against traffic noise pollution. Key words: Noise pollution, Traffics load , Community health, Lahore city Bangladesh J. Sci. Ind. Res. 42(4), 435-440, 2007


2021 ◽  
Author(s):  
Abhijit Debnath ◽  
Prasoon Kumar Singh ◽  
Sushmita Banerjee

Abstract Road traffic vehicular noise is one of the main sources of environmental pollution in urban areas of India. Also, steadily increasing urbanization, industrialization, infrastructures around city condition causing health risks among the urban populations. In this study we have explored noise descriptors (L10, L90, Ldn, LNI, TNI, NC), contour plotting and finds the suitability of artificial neural networks (ANN) for the prediction of traffic noise all around the Dhanbad township in 15 monitoring stations. In order to develop the prediction model, measuring noise levels of five different hours, speed of vehicles and traffic volume in every monitoring point have been studied and analyzed. Traffic volume, percent of heavy vehicles, Speed, traffic flow, road gradient, pavement, road side carriageway distance factors taken as input parameter, whereas LAeq as output parameter for formation of neural network architecture. As traffic flow is heterogenous which mainly contains 59% 2-wheelers and different vehicle specifications with varying speeds also effects driving and honking behavior which constantly changing noise characteristics. From radial noise diagrams shown that average noise levels of all the stations beyond permissible limit and highest noise levels were found at the speed of 50-55 km/h in both peak and non-peak hours. Noise descriptors clearly indicates high annoyance level in the study area. Artificial neural network with 7-7-5 formation has been developed and found as optimum due to its sum of square and overall relative error 0.858 & .029 in training and 0.458 & 0.862 in testing phase respectively. Comparative analysis between observed and predicted noise level shows very less deviation up to ±0.6 dB(A) and the R2 linear values are more than 0.9 in all five noise hours indicating the accuracy of model. Also, it can be concluded that ANN approach is much superior in prediction of traffic noise level to any other statistical method.


2020 ◽  
Vol 4 (1) ◽  
pp. 57-65
Author(s):  
Oksana A. Kopylova

The study relates to the problem of assessing and preventing geoecological risks arising from exposure to traffic noise. This paper explores the noise of large vehicles. Spectral, spatio-temporal characteristics of noise of tracked and wheeled heavy equipment, railway transport were obtained. The patterns of attenuation of the low-frequency transport noise level by distance are determined, the main modes of heavy equipment noise are highlighted.


Sign in / Sign up

Export Citation Format

Share Document