poison frog
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 64)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Eugenia Sanchez ◽  
Travis Ramirez ◽  
Lauren A O'Connell

Animals show a spectrum of avoidance-tolerance to foods containing toxic secondary metabolites. However, this spectrum has not been evaluated in animals that may actively seek out these compounds as a chemical defense. Poison frogs sequester toxic and unpalatable alkaloids from their diet, and in some species, tadpoles are exposed to these toxins before the development of their skin granular glands, which are used for toxin compartmentalization. Here, we examined the effects of the alkaloid decahydroquinoline (DHQ) in tadpoles of the Mimetic poison frog, Ranitomeya imitator, using alkaloid supplemented food. We found that although their survival is lowered by the alkaloid, their development is only mildly affected, with no evident effects on their growth. Furthermore, locomotor activity and feeding behavior was altered in the first week of DHQ treatment, probably in part through nicotinic blockade. However, after two weeks, tadpoles learned to avoid the alkaloid by visiting the food area only when necessary to eat. Our results suggest that poison frogs navigate the avoidance-tolerance spectrum during the development of their sequestration machinery.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7529
Author(s):  
Takuya Okada ◽  
Naizhen Wu ◽  
Katsuki Takashima ◽  
Jungoh Ishimura ◽  
Hiroyuki Morita ◽  
...  

The total synthesis of two decahydroquinoline poison frog alkaloids ent-cis-195A and cis-211A were achieved in 16 steps (38% overall yield) and 19 steps (31% overall yield), respectively, starting from known compound 1. Both alkaloids were synthesized from the common key intermediate 11 in a divergent fashion, and the absolute stereochemistry of natural cis-211A was determined to be 2R, 4aR, 5R, 6S, and 8aS. Interestingly, the absolute configuration of the parent decahydroquinoline nuclei of cis-211A was the mirror image of that of cis-195A, although both alkaloids were isolated from the same poison frog species, Oophaga (Dendrobates) pumilio, from Panama.


Author(s):  
Birgit Szabo ◽  
Rosanna Mangione ◽  
Matthias Rath ◽  
Andrius Pašukonis ◽  
Stephan A. Reber ◽  
...  

For animals to survive until reproduction, it is crucial that juveniles successfully detect potential predators and respond with appropriate behavior. The recognition of cues originating from predators can be innate or learned. Cues of various modalities might be used alone or in multi-modal combinations to detect and distinguish predators but studies investigating multi-modal integration in predator avoidance are scarce. Here, we used wild, naive tadpoles of the Neotropical Poison Frog Allobates femoralis (Boulenger, 1884) to test their reaction to cues with two modalities from two different sympatrically occurring potential predators: heterospecific predatory Dendrobates tinctorius tadpoles and dragonfly larvae. We presented A. femoralis tadpoles with olfactory or visual cues, or a combination of both and compared their reaction to a water-control in a between-individual design. In our trials, A. femoralis tadpoles reacted to multimodal stimuli (a combination of visual and chemical information) originating from dragonfly larvae with avoidance but showed no reaction to uni-modal cues or cues from heterospecific tadpoles. In addition, visual cues from conspecifics increased swimming activity while cues from predators had no effect on tadpole activity. Our results show that A. femoralis tadpoles can innately recognize some predators and likely need both visual and chemical information to effectively avoid them. This is the first study looking at anti-predator behavior in Poison Frog tadpoles. We discuss how parental care might influence the expression of predator avoidance responses in tadpoles.


Behaviour ◽  
2021 ◽  
pp. 1-12
Author(s):  
Lisa M. Schulte ◽  
Kyle Summers

Abstract Dendrobatid poison frogs are known for their diverse parental care behaviours, including terrestrial egg attendance. While usually this behaviour is conducted by males, this study compared the pre-hatching investment of males and females in Ranitomeya imitator, a species with biparental care. Although males tended to spend more time with their eggs overall, there was no difference between sexes when comparing different types of care behaviour. Furthermore, both sexes increased general care behaviour when caring for more than one clutch. The finding that the sexes are relatively equal in their contribution to basic parental care forms provides a basis to understand why biparental care is stable in this species.


2021 ◽  
Vol 13 (2) ◽  
pp. 7
Author(s):  
Pedro Peñaherrera-R. ◽  
Andrés Pinos-Sánchez

We report the first recorded case of partial erythrism in a frog belonging to the family Dendrobatidae, Mindo Poison Frog Epipedobates darwinwallacei Cisneros-Heredia and Yánez-Muñoz, 2010. In February 2019, we found an individual in the valley of Mindo, province of Pichincha, Ecuador showing dorsal surfaces uniformly orange, throat and posterior surfaces of legs black, and ventral surfaces yellow. Despite the atypic colouration, its general morphology coincides with E. darwinwallacei, and individuals with typical colouration for the species were abundant syntopically. We include photographs comparing the erythristic individual and a typical colouration frog from the same area. We provide a brief review of chromatic atypic colourations reported in Dendrobatoidea.


2021 ◽  
Vol 153 (9) ◽  
Author(s):  
Fayal Abderemane-Ali ◽  
Nathan D. Rossen ◽  
Megan E. Kobiela ◽  
Robert A. Craig ◽  
Catherine E. Garrison ◽  
...  

Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (NaV) function. Among these, batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual effects on NaV function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison frogs, a NaV DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show that this variant is absent from Pitohui and poison frog NaVs, incurs a strong cost compromising channel function, and fails to produce BTX-resistant channels in poison frog NaVs. We also show that captivity-raised poison frogs are resistant to two NaV-directed toxins, BTX and saxitoxin (STX), even though they bear NaVs sensitive to both. Moreover, we demonstrate that the amphibian STX “toxin sponge” protein saxiphilin is able to protect and rescue NaVs from block by STX. Taken together, our data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 N→T mutation, challenge the idea that ion channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms may be key for protecting poisonous species from the action of small-molecule toxins.


Author(s):  
Mileidy Betancourth-Cundar ◽  
Pablo Palacios-Rodríguez ◽  
Daniel Mejía-Vargas ◽  
Andrea Paz ◽  
Adolfo Amézquita

Sign in / Sign up

Export Citation Format

Share Document