scholarly journals TMEM263: a novel candidate gene implicated in human autosomal recessive severe lethal skeletal dysplasia

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Mahsa Sadat Asl Mohajeri ◽  
Atieh Eslahi ◽  
Zeinab Khazaii ◽  
Mohammad Reza Moradi ◽  
Reza Pazhoomand ◽  
...  

Abstract Introduction Skeletal dysplasia is a common, clinically and genetically heterogeneous disorder in the human population. An increasing number of different genes are being identified causing this disorder. We used whole exome sequencing (WES) for detection of skeletal dysplasia causing mutation in a fetus affected to severe lethal skeletal dysplasia. Patient Fetus was assessed by ultrasonography in second trimester of pregnancy. He suffers from severe rhizomelic dysplasia and also pathologic shortening of ribs. WES was applied to finding of causal mutation. Furthermore, bioinformatics analysis was performed to predict mutation impact. Results Whole exome sequencing (WES) identified a homozygous frameshift mutation in the TMEM263 gene in a fetus with severe lethal skeletal dysplasia. Mutations of this gene have been previously identified in dwarf chickens, but this is the first report of involvement of this gene in human skeletal dysplasia. This gene plays a key role in the growth hormone signaling pathway. Conclusion TMEM263 can be considered as a new gene responsible for skeletal dysplasia. Given the complications observed in the affected fetus, the mutation of this gene appears to produce much more intense complications than that found in chickens and is likely to play a more important role in bone development in human.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Lara Pemberton ◽  
Robert Barker ◽  
Anna Cockell ◽  
Vijaya Ramachandran ◽  
Andrea Haworth ◽  
...  

Abstract Background Osteocraniostenosis (OCS) is a rare genetic disorder characterised by premature closure of cranial sutures, gracile bones and perinatal lethality. Previously, diagnosis has only been possible postnatally on clinical and radiological features. This study describes the first prenatal diagnosis of OCS. Case presentation In this case prenatal ultrasound images were suggestive of a serious but non-lethal skeletal dysplasia. Due to the uncertain prognosis the parents were offered Whole Exome Sequencing (WES), which identified a specific gene mutation in the FAMIIIa gene. This mutation had previously been detected in two cases and was lethal in both perinatally. This established the diagnosis, a clear prognosis and allowed informed parental choice regarding ongoing pregnancy management. Conclusions This case report supports the use of targeted WES prenatally to confirm the underlying cause and prognosis of sonographically suspected abnormalities.


2015 ◽  
Vol 24 (14) ◽  
pp. 4037-4048 ◽  
Author(s):  
Almudena Avila-Fernandez ◽  
Raquel Perez-Carro ◽  
Marta Corton ◽  
Maria Isabel Lopez-Molina ◽  
Laura Campello ◽  
...  

Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 286
Author(s):  
Ting-Yu Chang ◽  
I-Fang Chung ◽  
Wan-Ju Wu ◽  
Shun-Ping Chang ◽  
Wen-Hsiang Lin ◽  
...  

Skeletal dysplasia (SD) is a complex group of bone and cartilage disorders often detectable by fetal ultrasound, but the definitive diagnosis remains challenging because the phenotypes are highly variable and often overlap among different disorders. The molecular mechanisms underlying this condition are also diverse. Hundreds of genes are involved in the pathogenesis of SD, but most of them are yet to be elucidated, rendering genotyping almost infeasible except those most common such as fibroblast growth factor receptor 3 (FGFR3), collagen type I alpha 1 chain (COL1A1), collagen type I alpha 2 chain (COL1A2), diastrophic dysplasia sulfate transporter (DTDST), and SRY-box 9 (SOX9). Here, we report the use of trio-based whole exome sequencing (trio-WES) with comprehensive gene set analysis in two Taiwanese non-consanguineous families with fetal SD at autopsy. A biparental-origin homozygous c.509G>A(p.G170D) mutation in peptidylprolyl isomerase B (PPIB) gene was identified. The results support a diagnosis of a rare form of autosomal recessive SD, osteogenesis imperfecta type IX (OI IX), and confirm that the use of a trio-WES study is helpful to uncover a genetic explanation for observed fetal anomalies (e.g., SD), especially in cases suggesting autosomal recessive inheritance. Moreover, the finding of an identical PPIB mutation in two non-consanguineous families highlights the possibility of the founder effect, which deserves future investigations in the Taiwanese population.


2017 ◽  
Vol 27 (4) ◽  
pp. 614-624 ◽  
Author(s):  
Monika Weisz Hubshman ◽  
Sanne Broekman ◽  
Erwin van Wijk ◽  
Frans Cremers ◽  
Alaa Abu-Diab ◽  
...  

2021 ◽  
Author(s):  
Rui Zhang ◽  
Yajing Hao ◽  
Ying Xu ◽  
Jiale Qin ◽  
Yanfang Wang ◽  
...  

Abstract Background: Isolated sulfite oxidase deficiency (ISOD) is the rarest types of life-threatening neurometabolic disorders characterized by neonatal intractable seizures and severe developmental delay with an autosomal recessive mode of inheritance. ISOD is extremely rare and till date only 32 mutations have been identified and reported worldwide. Germline mutation in SUOX gene causes ISOD. Methods: Here, we investigated a 5-days old Chinese female child, presented with intermittent tremor or seizures of limbs, neonatal encephalopathy, subarachnoid cyst and haemorrhage, dysplasia of corpus callosum, neonatal convulsion, respiratory failure, cardiac failure, hyperlactatemia, severe metabolic acidosis, hyperglycemia, hyperkalemia, moderate anemia, atrioventricular block and complete right bundle branch block. Results: Whole exome sequencing identified a novel homozygous transition (c.1227G>A) in exon 6 of the SUOX gene in the proband. This novel homozygous variant leads to the formation of a truncated sulfite oxidase (p.Trp409*) of 408 amino acids. Hence, it is a loss-of-function variant. Proband’s father and mother is carrying this novel variant in a heterozygous state. This variant was not identified in 200 ethnically matched normal healthy control individuals. Conclusions: Our study not only expand the mutational spectrum of SUOX gene associated ISOD, but also strongly suggested the application of whole exome sequencing for identifying candidate genes and novel disease-causing mutations.


2020 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results: Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions: Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


Author(s):  
Piranit Nik Kantaputra ◽  
Prapai Dejkhamron ◽  
Worrachet Intachai ◽  
Chumpol Ngamphiw ◽  
Katsushige Kawasaki ◽  
...  

Summary Background Juberg-Hayward syndrome (JHS; MIM 216100) is a rare autosomal recessive malformation syndrome, characterized by cleft lip/palate, microcephaly, ptosis, short stature, hypoplasia or aplasia of thumbs, and dislocation of radial head and fusion of humerus and radius leading to elbow restriction. Objective To report for the first time the molecular aetiology of JHS. Patient and methods Clinical and radiographic examination, whole exome sequencing, Sanger sequencing, mutant protein model construction, and in situ hybridization of Esco2 expression in mouse embryos were performed. Results Clinical findings of the patient consisted of repaired cleft lip/palate, microcephaly, ptosis, short stature, delayed bone age, hypoplastic fingers and thumbs, clinodactyly of the fifth fingers, and humeroradial synostosis leading to elbow restriction. Intelligence is normal. Whole exome sequencing of the whole family showed a novel homozygous base substitution c.1654C>T in ESCO2 of the proband. The sister was homozygous for the wildtype variant. Parents were heterozygous for the mutation. The mutation is predicted to cause premature stop codon p.Arg552Ter. Mutations in ESCO2, a gene involved in cohesin complex formation, are known to cause Roberts/SC phocomelia syndrome. Roberts/SC phocomelia syndrome and JHS share similar clinical findings, including autosomal recessive inheritance, short stature, cleft lip/palate, severe upper limb anomalies, and hypoplastic digits. Esco2 expression during the early development of lip, palate, eyelid, digits, upper limb, and lower limb and truncated protein model are consistent with the defect. Conclusions Our study showed that Roberts/SC phocomelia syndrome and JHS are allelic and distinct entities. This is the first report demonstrating that mutation in ESCO2 causes JHS, a cohesinopathy.


Neurogenetics ◽  
2019 ◽  
Vol 20 (3) ◽  
pp. 117-127 ◽  
Author(s):  
Shelisa Tey ◽  
Nortina Shahrizaila ◽  
Alexander P. Drew ◽  
Sarimah Samulong ◽  
Khean-Jin Goh ◽  
...  

2016 ◽  
Vol 31 (14) ◽  
pp. 1534-1539 ◽  
Author(s):  
Maya Kuperberg ◽  
Dorit Lev ◽  
Lubov Blumkin ◽  
Ayelet Zerem ◽  
Mira Ginsberg ◽  
...  

Whole exome sequencing enables scanning a large number of genes for relatively low costs. The authors investigate its use for previously undiagnosed pediatric neurological patients. This retrospective cohort study performed whole exome sequencing on 57 patients of “Magen” neurogenetic clinics, with unknown diagnoses despite previous workup. The authors report on clinical features, causative genes, and treatment modifications and provide an analysis of whole exome sequencing utility per primary clinical feature. A causative gene was identified in 49.1% of patients, of which 17 had an autosomal dominant mutation, 9 autosomal recessive, and 2 X-linked. The highest rate of positive diagnosis was found for patients with developmental delay, ataxia, or suspected neuromuscular disease. Whole exome sequencing warranted a definitive change of treatment for 5 patients. Genetic databases were updated accordingly. In conclusion, whole exome sequencing is useful in obtaining a high detection rate for previously undiagnosed disorders. Use of this technique could affect diagnosis, treatment, and prognostics for both patients and relatives.


Sign in / Sign up

Export Citation Format

Share Document