gene set analysis
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 51)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Juliana Albano de Guimarães ◽  
Bidossessi Wilfried Hounpke ◽  
Bruna Duarte ◽  
Ana Luiza Mylla Boso ◽  
Marina Gonçalves Monteiro Viturino ◽  
...  

AbstractPterygium is a common ocular surface condition frequently associated with irritative symptoms. The precise identity of its critical triggers as well as the hierarchical relationship between all the elements involved in the pathogenesis of this disease are not yet elucidated. Meta-analysis of gene expression studies represents a novel strategy capable of identifying key pathogenic mediators and therapeutic targets in complex diseases. Samples from nine patients were collected during surgery after photo documentation and clinical characterization of pterygia. Gene expression experiments were performed using Human Clariom D Assay gene chip. Differential gene expression analysis between active and atrophic pterygia was performed using limma package after adjusting variables by age. In addition, a meta-analysis was performed including recent gene expression studies available at the Gene Expression Omnibus public repository. Two databases including samples from adults with pterygium and controls fulfilled our inclusion criteria. Meta-analysis was performed using the Rank Production algorithm of the RankProd package. Gene set analysis was performed using ClueGO and the transcription factor regulatory network prediction was performed using appropriate bioinformatics tools. Finally, miRNA-mRNA regulatory network was reconstructed using up-regulated genes identified in the gene set analysis from the meta-analysis and their interacting miRNAs from the Brazilian cohort expression data. The meta-analysis identified 154 up-regulated and 58 down-regulated genes. A gene set analysis with the top up-regulated genes evidenced an overrepresentation of pathways associated with remodeling of extracellular matrix. Other pathways represented in the network included formation of cornified envelopes and unsaturated fatty acid metabolic processes. The miRNA-mRNA target prediction network, also reconstructed based on the set of up-regulated genes presented in the gene ontology and biological pathways network, showed that 17 target genes were negatively correlated with their interacting miRNAs from the Brazilian cohort expression data. Once again, the main identified cluster involved extracellular matrix remodeling mechanisms, while the second cluster involved formation of cornified envelope, establishment of skin barrier and unsaturated fatty acid metabolic process. Differential expression comparing active pterygium with atrophic pterygium using data generated from the Brazilian cohort identified differentially expressed genes between the two forms of presentation of this condition. Our results reveal differentially expressed genes not only in pterygium, but also in active pterygium when compared to the atrophic ones. New insights in relation to pterygium’s pathophysiology are suggested.


2021 ◽  
Author(s):  
Viola Hollestein ◽  
Geert Poelmans ◽  
Natalie Forde ◽  
Christian F Beckmann ◽  
Christine Ecker ◽  
...  

Background: The excitatory/inhibitory (E/I) imbalance hypothesis posits that an imbalance between excitatory (glutamatergic) and inhibitory (GABAergic) mechanisms underlies the behavioral characteristics of autism spectrum disorder (autism). However, how E/I imbalance arises and how it may differ across autism symptomatology and brain regions is not well understood. Methods: We used innovative analysis methods - combining competitive gene-set analysis and gene-expression profiles in relation to cortical thickness (CT)- to investigate the relationship between genetic variance, brain structure and autism symptomatology of participants from the EU-AIMS LEAP cohort (autism=360, male/female=259/101; neurotypical control participants=279, male/female=178/101) aged 6 to 30 years. Competitive gene-set analysis investigated associations between glutamatergic and GABAergic signaling pathway gene-sets and clinical measures, and CT. Additionally, we investigated expression profiles of the genes within those sets throughout the brain and how those profiles relate to differences in CT between autistic and neurotypical control participants in the same regions. Results: The glutamate gene-set was associated with all autism symptom severity scores on the Autism Diagnostic Observation Schedule-2 (ADOS-2) and the Autism Diagnostic Interview-Revised (ADI-R) within the autistic group, while the GABA set was associated with sensory processing measures (using the SSP subscales) across all participants. Brain regions with greater gene expression of both glutamate and GABA genes showed greater differences in CT between autistic and neurotypical control participants. Conclusions: Our results suggest crucial roles for glutamate and GABA genes in autism symptomatology as well as CT, where GABA is more strongly associated with sensory processing and glutamate more with autism symptom severity. 


2021 ◽  
Vol 12 ◽  
Author(s):  
Michal Marczyk ◽  
Agnieszka Macioszek ◽  
Joanna Tobiasz ◽  
Joanna Polanska ◽  
Joanna Zyla

A typical genome-wide association study (GWAS) analyzes millions of single-nucleotide polymorphisms (SNPs), several of which are in a region of the same gene. To conduct gene set analysis (GSA), information from SNPs needs to be unified at the gene level. A widely used practice is to use only the most relevant SNP per gene; however, there are other methods of integration that could be applied here. Also, the problem of nonrandom association of alleles at two or more loci is often neglected. Here, we tested the impact of incorporation of different integrations and linkage disequilibrium (LD) correction on the performance of several GSA methods. Matched normal and breast cancer samples from The Cancer Genome Atlas database were used to evaluate the performance of six GSA algorithms: Coincident Extreme Ranks in Numerical Observations (CERNO), Gene Set Enrichment Analysis (GSEA), GSEA-SNP, improved GSEA for GWAS (i-GSEA4GWAS), Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA), and Over-Representation Analysis (ORA). Association of SNPs to phenotype was calculated using modified McNemar’s test. Results for SNPs mapped to the same gene were integrated using Fisher and Stouffer methods and compared with the minimum p-value method. Four common measures were used to quantify the performance of all combinations of methods. Results of GSA analysis on GWAS were compared to the one performed on gene expression data. Comparing all evaluation metrics across different GSA algorithms, integrations, and LD correction, we highlighted CERNO, and MAGENTA with Stouffer as the most efficient. Applying LD correction increased prioritization and specificity of enrichment outcomes for all tested algorithms. When Fisher or Stouffer were used with LD, sensitivity and reproducibility were also better. Using any integration method was beneficial in comparison with a minimum p-value method in specific combinations. The correlation between GSA results from genomic and transcriptomic level was the highest when Stouffer integration was combined with LD correction. We thoroughly evaluated different approaches to GSA in GWAS in terms of performance to guide others to select the most effective combinations. We showed that LD correction and Stouffer integration could increase the performance of enrichment analysis and encourage the usage of these techniques.


Author(s):  
Daigo Okada ◽  
Jian Hao Cheng ◽  
Cheng Zheng ◽  
Ryo Yamada

AbstractComparing multiple single-cell expression datasets such as cytometry and scRNA-seq data between case and control donors provides information to elucidate the mechanisms of disease. We propose a completely data-driven computational biological method for this task. This overcomes the challenges of conventional cellular subset-based comparisons and facilitates further analyses such as machine learning and gene set analysis of single-cell expression datasets.


2021 ◽  
Vol 429 ◽  
pp. 118105
Author(s):  
Antonino Giordano ◽  
Silvia Santoro ◽  
Melissa Sorosina ◽  
Ferdinando Clarelli ◽  
Laura Ferrè ◽  
...  

Author(s):  
Ligia Cavani ◽  
Michael B. Poindexter ◽  
Corwin D. Nelson ◽  
José E.P. Santos ◽  
Francisco Peñagaricano

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1523
Author(s):  
Farhad Maleki ◽  
Katie Ovens ◽  
Ian McQuillan ◽  
Anthony J. Kusalik

Gene set analysis has been widely used to gain insight from high-throughput expression studies. Although various tools and methods have been developed for gene set analysis, there is no consensus among researchers regarding best practice(s). Most often, evaluation studies have reported contradictory recommendations of which methods are superior. Therefore, an unbiased quantitative framework for evaluations of gene set analysis methods will be valuable. Such a framework requires gene expression datasets where enrichment status of gene sets is known a priori. In the absence of such gold standard datasets, artificial datasets are commonly used for evaluations of gene set analysis methods; however, they often rely on oversimplifying assumptions that make them biased in favor of or against a given method. In this paper, we propose a quantitative framework for evaluation of gene set analysis methods by synthesizing expression datasets using real data, without relying on oversimplifying or unrealistic assumptions, while preserving complex gene–gene correlations and retaining the distribution of expression values. The utility of the quantitative approach is shown by evaluating ten widely used gene set analysis methods. An implementation of the proposed method is publicly available. We suggest using Silver to evaluate existing and new gene set analysis methods. Evaluation using Silver provides a better understanding of current methods and can aid in the development of gene set analysis methods to achieve higher specificity without sacrificing sensitivity.


2021 ◽  
Author(s):  
Laura Villain ◽  
Thomas Ferté ◽  
Rodolphe Thiébaut ◽  
Boris P. Hejblum

SummaryGene Set analysis allows to evaluate the impact of groups of genes on an outcome of interest, such as the occurrence of a disease. Through the definition of the gene sets, gene set analysis takes into account biological knowledge and makes it easier to interpret the results, while improving the statistical power compared to a gene-wise analysis. In the time-to-event context, few methods exist, but most of them do not take into account the correlation that occurs inside a gene set, which can be strong. As the Generalized Berk-Jones statistics showed great consistency and includes the correlation inside the test statistic, we adapted this method to the time-to-event context by using a Cox model. We compared our approach to other methods based on the Cox model, and showed that the Generalize Berk-Jones statistic offers great adaptability, meaning that it can be used in all kinds of data structures. We applied the different methods to two different contexts: Gliomas and Breast cancer. In terms of statistical power, we did offer similar results to the other Cox model methods, but with greater accuracy. In the breast cancer framework, we showed better statistical power than methods based on Kernel Machine score.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 945
Author(s):  
Samarendra Das ◽  
Shesh N. Rai

Genome-wide expression study is a powerful genomic technology to quantify expression dynamics of genes in a genome. In gene expression study, gene set analysis has become the first choice to gain insights into the underlying biology of diseases or stresses in plants. It also reduces the complexity of statistical analysis and enhances the explanatory power of the obtained results from the primary downstream differential expression analysis. The gene set analysis approaches are well developed in microarrays and RNA-seq gene expression data analysis. These approaches mainly focus on analyzing the gene sets with gene ontology or pathway annotation data. However, in plant biology, such methods may not establish any formal relationship between the genotypes and the phenotypes, as most of the traits are quantitative and controlled by polygenes. The existing Quantitative Trait Loci (QTL)-based gene set analysis approaches only focus on the over-representation analysis of the selected genes while ignoring their associated gene scores. Therefore, we developed an innovative statistical approach, GSQSeq, to analyze the gene sets with trait enriched QTL data. This approach considers the associated differential expression scores of genes while analyzing the gene sets. The performance of the developed method was tested on five different crop gene expression datasets obtained from real crop gene expression studies. Our analytical results indicated that the trait-specific analysis of gene sets was more robust and successful through the proposed approach than existing techniques. Further, the developed method provides a valuable platform for integrating the gene expression data with QTL data.


Sign in / Sign up

Export Citation Format

Share Document