scholarly journals Aquatic habitat use in a semi-aquatic mammal: the Eurasian beaver

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rasmus Mohr Mortensen ◽  
Stefanie Reinhardt ◽  
Marina Eraker Hjønnevåg ◽  
Rory Paul Wilson ◽  
Frank Rosell

Abstract Background Semi-aquatic mammals exploit resources both on land and in water and may require both to meet their habitat requirements including food- and building resources, refuges, and for social interactions with conspecifics. Within this, the specific availability of both terrestrial and aquatic resources is expected to impact individual fitness. Beavers are highly dependent on water for movement and protection from predators. They are central place foragers and mostly forage on woody vegetation near water although aquatic vegetation may also be an important food resource. However, little is known about their use of aquatic habitats. We aimed to address this knowledge gap by dead-reckoning fine-scale movement tracks and classifying fine-scale diving events, which we then related to the spatial distribution of aquatic vegetation and habitat components within the territory. Results Overall, there was a statistically clear decrease in probability that diving would occur at dawn and with increasing distance from territory borders. In addition, the distance from the lodge at which animals dived decreased through the night and during the spring/early summer. There was strong selection for diving habitats located closer to the riverbank, with stronger selection for these areas being observed in individuals with larger home ranges. We saw a higher selection for diving above clay sediment, and within 150 m from the lodge, presumably because mud and clay sediment tended to be located closer to the lodge than sand and rock sediment. Furthermore, we found a clear selection for diving in the presence of quillwort (Isoetes spp.), shoreweed (Littorella uniflora), and stonewort (Nitella spp.). Selection for these focal species was stronger among subordinate individuals. Individuals with lower body condition dived closer to the beaver lodge, and dives located further from the lodge were associated with high densities of aquatic vegetation. Conclusion We provide new knowledge on the aquatic habitat use in a semi-aquatic mammal and show how energetic constraints may shape how beavers spatially use the aquatic environment, whereby short and shallow dives appear most beneficial. We show how aquatic habitats may have great importance for both foraging, building materials and safety, and discuss to how they may affect the fitness of individuals.

2012 ◽  
Vol 72 (2) ◽  
pp. 216-227 ◽  
Author(s):  
Jennifer G. Chipault ◽  
Dean E. Biggins ◽  
James K. Detling ◽  
Dustin H. Long ◽  
Robin M. Reich

Oecologia ◽  
2018 ◽  
Vol 186 (3) ◽  
pp. 831-842 ◽  
Author(s):  
Casey A. Pennock ◽  
C. Nathan Cathcart ◽  
Skyler C. Hedden ◽  
Robert E. Weber ◽  
Keith B. Gido

2019 ◽  
Vol 12 (5) ◽  
pp. 2933-2948 ◽  
Author(s):  
Shan Xu ◽  
Bin Zou ◽  
Yan Lin ◽  
Xiuge Zhao ◽  
Shenxin Li ◽  
...  

Abstract. Fine particulate matter (PM2.5) is of great concern to the public due to its significant risk to human health. Numerous methods have been developed to estimate spatial PM2.5 concentrations in unobserved locations due to the sparse number of fixed monitoring stations. Due to an increase in low-cost sensing for air pollution monitoring, crowdsourced monitoring of exposure control has been gradually introduced into cities. However, the optimal mapping method for conventional sparse fixed measurements may not be suitable for this new high-density monitoring approach. This study presents a crowdsourced sampling campaign and strategies of method selection for 100 m scale PM2.5 mapping in an intra-urban area of China. During this process, PM2.5 concentrations were measured by laser air quality monitors through a group of volunteers during two 5 h periods. Three extensively employed modelling methods (ordinary kriging, OK; land use regression, LUR; and regression kriging, RK) were adopted to evaluate the performance. An interesting finding is that PM2.5 concentrations in micro-environments varied in the intra-urban area. These local PM2.5 variations can be easily identified by crowdsourced sampling rather than national air quality monitoring stations. The selection of models for fine-scale PM2.5 concentration mapping should be adjusted according to the changing sampling and pollution circumstances. During this project, OK interpolation performs best in conditions with non-peak traffic situations during a lightly polluted period (holdout validation R2: 0.47–0.82), while the RK modelling can perform better during the heavily polluted period (0.32–0.68) and in conditions with peak traffic and relatively few sampling sites (fewer than ∼100) during the lightly polluted period (0.40–0.69). Additionally, the LUR model demonstrates limited ability in estimating PM2.5 concentrations on very fine spatial and temporal scales in this study (0.04–0.55), which challenges the traditional point about the good performance of the LUR model for air pollution mapping. This method selection strategy provides empirical evidence for the best method selection for PM2.5 mapping using crowdsourced monitoring, and this provides a promising way to reduce the exposure risks for individuals in their daily life.


2017 ◽  
Vol 141 ◽  
pp. 224-236 ◽  
Author(s):  
Candice Michelot ◽  
David Pinaud ◽  
Matthieu Fortin ◽  
Philippe Maes ◽  
Benjamin Callard ◽  
...  

Ibis ◽  
2012 ◽  
Vol 154 (4) ◽  
pp. 803-814 ◽  
Author(s):  
Kevin Kuhlmann Clausen ◽  
Preben Clausen ◽  
Casper Caesar Faelled ◽  
Kim Nørgaard Mouritsen

Author(s):  
Audrey Looby ◽  
Laura K. Reynolds ◽  
Carrie Reinhardt Adams ◽  
Stephen J. Walsh ◽  
Charles W. Martin

2006 ◽  
Vol 33 (2) ◽  
pp. 137 ◽  
Author(s):  
Grainne S. Maguire

Fine-scale variation in habitat structure and composition is likely to influence habitat use by avian species with limited flight capabilities. I investigated proportional use of available habitat and microhabitat by the southern emu-wren (Stipiturus malachurus), a threatened, flight-limited passerine, at three sites in Victoria, in relation to vegetation structure and composition. Emu-wrens appeared to discriminate between habitats with regard to structural rather than floristic characteristics. Habitats with dense vertical foliage of shrubs, grasses and sedges/rushes between ground level and 100 cm, and dense horizontal cover of medium to tall shrubs, were used most frequently. However, when availability of habitat was taken into account, habitat use was negatively correlated with the vertical density of low shrub foliage and species richness. Within habitats, emu-wrens more frequently used plant species that had a dense canopy cover (26 ± 2% of total cover, crown diameter 93 ± 5 cm), high foliage density between 50 and 100 cm, and average heights of ~1 m. Plant species in which the birds nested comprised ~14% of total canopy cover and were densest between ground level and 50 cm. Canopy cover, vegetation height and vertical foliage density were consistently important variables correlated with emu-wren habitat use at multiple fine-scales. This study provides valuable information for conservation management of the species; in particular, the restoration of degraded habitats.


Sign in / Sign up

Export Citation Format

Share Document