scholarly journals Differential horizontal migration patterns of two male salmon sharks (Lamna ditropis) tagged in the Bering Sea

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sabrina Garcia ◽  
Cindy A. Tribuzio ◽  
Andrew C. Seitz ◽  
Michael B. Courtney ◽  
Julie K. Nielsen ◽  
...  

Abstract Background The salmon shark (Lamna ditropis) is a widely distributed apex predator in the North Pacific Ocean. Many salmon sharks from the eastern North Pacific, specifically Prince William Sound, Alaska, have been satellite tagged and tracked, but due to the sexual segregation present in salmon sharks, most of these tagged sharks were female. Consequently, little information exists regarding the migration patterns of male salmon sharks. To better understand the migration and distribution of this species, information on the male component of the population as well as from sharks outside of Prince William Sound, Alaska, is needed. In this study, we deployed satellite transmitters on two mature male salmon sharks caught in the Bering Sea. Results The two mature male salmon sharks tagged in the Bering Sea exhibited distinct migration patterns. The first male, tagged in August 2017, traveled to southern California where it remained from January to April after which it traveled north along the United States’ coast and returned to the Bering Sea in August 2018. The second male, tagged in September 2019, remained in the North Pacific between 38° N and 50° N before returning to the Bering Sea in July of year one and as of its last known location in year two. The straight-line distance traveled by the 2017 and 2019 sharks during their 12 and 22 months at liberty was 18,775 km and 27,100 km, respectively. Conclusions Before this study, our understanding of salmon shark migration was limited to female salmon sharks satellite tagged in the eastern North Pacific. The 2017 male salmon shark undertook a similar, but longer, north–south migration as tagged female sharks whereas the 2019 shark showed little overlap with previously tagged females. The different migration patterns between the two male sharks suggest distinct areas exist for foraging across the North Pacific. The return of both sharks to the Bering Sea suggests some fidelity to the region. Continued tagging efforts are necessary to understand the population structure of salmon sharks in the North Pacific. This tagging study highlights the importance of opportunistic efforts for obtaining information on species and sex with limited distribution data.

2009 ◽  
Vol 75 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Shogo Moriya ◽  
Shunpei Sato ◽  
Moongeun Yoon ◽  
Tomonori Azumaya ◽  
Shigehiko Urawa ◽  
...  

Polar Science ◽  
2019 ◽  
Vol 21 ◽  
pp. 228-232 ◽  
Author(s):  
Yuichiro Kumamoto ◽  
Michio Aoyama ◽  
Yasunori Hamajima ◽  
Shigeto Nishino ◽  
Akihiko Murata ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 670 ◽  
Author(s):  
Kequan Zhang ◽  
Tao Wang ◽  
Mian Xu ◽  
Jiankai Zhang

The effects of wintertime stratospheric polar vortex variation on the climate over the North Pacific Ocean during late winter and spring are analyzed using the National Centers for Environmental Predictions, version 2 (NCEP2) reanalysis dataset. The analysis revealed that, during weak polar vortex (WPV) events, there are noticeably lower geopotential height anomalies over the Bering Sea and greater height anomalies over the central part of the North Pacific Ocean than during strong polar vortex (SPV) events. The formation of the dipolar structure of the geopotential height anomalies is due to a weakened polar jet and a strengthened mid-latitude jet in the troposphere via geostrophic equilibrium. The mechanisms responsible for the changes in the tropospheric jet over the North Pacific Ocean are summarized as follows: when the stratospheric polar westerly is decelerated, the high-latitude eastward waves slow down, and the enhanced equatorward propagation of the eddy momentum flux throughout the troposphere at 60° N. Consequently, the eddy-driven jet over the North Pacific Ocean also shows a southward displacement, leading to a weaker polar jet but a stronger mid-latitude westerly compared with those during the SPV events. Furthermore, anomalous anti-cyclonic flows associated with the higher pressure over the North Pacific Ocean during WPV events induce a warming sea surface temperature (SST) over the western and central parts of the North Pacific Ocean and a cooling SST over the Bering Sea and along the west coast of North America. This SST pattern can last until May, which favors the persistence of the anti-cyclonic flows over the North Pacific Ocean during WPV events. A well-resolved stratosphere and coupled atmosphere-ocean model (CMCC-CMS) can basically reproduce the impacts of stratospheric polar vortex variations on the North Pacific climate as seen in NCEP2 data, although the simulated dipole of geopotential height anomalies is shifted more southward.


Sign in / Sign up

Export Citation Format

Share Document