scholarly journals Urban specialization reduces habitat connectivity by a highly mobile wading bird

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Claire S. Teitelbaum ◽  
Jeffrey Hepinstall-Cymerman ◽  
Anjelika Kidd-Weaver ◽  
Sonia M. Hernandez ◽  
Sonia Altizer ◽  
...  

Abstract Background Mobile animals transport nutrients and propagules across habitats, and are crucial for the functioning of food webs and for ecosystem services. Human activities such as urbanization can alter animal movement behavior, including site fidelity and resource use. Because many urban areas are adjacent to natural sites, mobile animals might connect natural and urban habitats. More generally, understanding animal movement patterns in urban areas can help predict how urban expansion will affect the roles of highly mobile animals in ecological processes. Methods Here, we examined movements by a seasonally nomadic wading bird, the American white ibis (Eudocimus albus), in South Florida, USA. White ibis are colonial wading birds that forage on aquatic prey; in recent years, some ibis have shifted their behavior to forage in urban parks, where they are fed by people. We used a spatial network approach to investigate how individual movement patterns influence connectivity between urban and non-urban sites. We built a network of habitat connectivity using GPS tracking data from ibis during their non-breeding season and compared this network to simulated networks that assumed individuals moved indiscriminately with respect to habitat type. Results We found that the observed network was less connected than the simulated networks, that urban-urban and natural-natural connections were strong, and that individuals using urban sites had the least-variable habitat use. Importantly, the few ibis that used both urban and natural habitats contributed the most to connectivity. Conclusions Habitat specialization in urban-acclimated wildlife could reduce the exchange of propagules and nutrients between urban and natural areas, which has consequences both for beneficial effects of connectivity such as gene flow and for detrimental effects such as the spread of contaminants or pathogens.

BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Shannon E. Pittman ◽  
Ian A. Bartoszek

Abstract Background Dispersal behavior is a critical component of invasive species dynamics, impacting both spatial spread and population density. In South Florida, Burmese pythons (Python bivittatus) are an invasive species that disrupt ecosystems and have the potential to expand their range northward. Control of python populations is limited by a lack of information on movement behavior and vital rates, especially within the younger age classes. We radio-tracked 28 Burmese pythons from hatching until natural mortality for approximately 3 years. Pythons were chosen from 4 clutches deposited by adult females in 4 different habitats: forested wetland, urban interface, upland pine, and agricultural interface. Results Known-fate survival estimate was 35.7% (95% CI = 18% - 53%) in the first 6 months, and only 2 snakes survived 3 years post hatching. Snakes moving through ‘natural’ habitats had higher survival than snakes dispersing through ‘modified’ habitats in the first 6- months post-hatching. Predation was the most common source of mortality. Snakes from the agricultural interface utilized canals and displayed the largest net movements. Conclusions Our results suggest that pythons may have lower survival if clutches are deposited in or near urbanized areas. Alternatively, juvenile pythons could quickly disperse to new locations by utilizing canals that facilitate linear movement. This study provides critical information about behavioral and life history characteristics of juvenile Burmese pythons that will inform management practices.


2018 ◽  
Vol 373 (1745) ◽  
pp. 20170100 ◽  
Author(s):  
Maureen H. Murray ◽  
Anjelika D. Kidd ◽  
Shannon E. Curry ◽  
Jeffrey Hepinstall-Cymerman ◽  
Michael J. Yabsley ◽  
...  

Many wildlife species shift their diets to use novel resources in urban areas. The consequences of these shifts are not well known, and consumption of reliable—but low quality—anthropogenic food may present important trade-offs for wildlife health. This may be especially true for carnivorous species such as the American white ibis ( Eudocimus albus ), a nomadic wading bird which has been increasingly observed in urban parks in South Florida, USA. We tested the effects of anthropogenic provisioning on consumer nutrition (i.e. dietary protein), body condition and ectoparasite burdens along an urban gradient using stable isotope analysis, scaled mass index values and GPS transmitter data. Ibises that assimilated more provisioned food were captured at more urban sites, used more urban habitat, had lower mass–length residuals, lower ectoparasite scores, assimilated less δ 15N and had smaller dietary isotopic ellipses. Our results suggest that ibises in urban areas are heavily provisioned with anthropogenic food, which appears to offer a trade-off by providing low-quality, but easily accessible, calories that may not support high mass but may increase time available for anti-parasite behaviours such as preening. Understanding such trade-offs is important for investigating the effects of provisioning on infection risk and the conservation of wildlife in human-modified habitats. This article is part of the theme issue ‘Anthropogenic resource subsidies and host–parasite dynamics in wildlife’.


2017 ◽  
Vol 98 (5) ◽  
pp. 1463-1478 ◽  
Author(s):  
Dana L Karelus ◽  
J Walter McCown ◽  
Brian K Scheick ◽  
Madelon van de Kerk ◽  
Benjamin M Bolker ◽  
...  

Abstract A greater understanding of how environmental factors and anthropogenic landscape features influence animal movements can inform management and potentially aid in mitigating human–wildlife conflicts. We investigated the movement patterns of 16 Florida black bears (Ursus americanus floridanus; 6 females, 10 males) in north-central Florida at multiple temporal scales using GPS data collected from 2011 to 2014. We calculated bi-hourly step-lengths and directional persistence, as well as daily and weekly observed displacements and expected displacements. We used those movement metrics as response variables in linear mixed models and tested for effects of sex, season, and landscape features. We found that step-lengths of males were generally longer than step-lengths of females, and both sexes had the shortest step-lengths during the daytime. Bears moved more slowly (shorter step-lengths) and exhibited less directed movement when near creeks, in forested wetlands, and in marsh habitats, possibly indicating foraging behavior. In urban areas, bears moved more quickly (longer step-lengths) and along more directed paths. The results were similar across all temporal scales. Major roads tended to act as a semipermeable barrier to bear movement. Males crossed major roads more frequently than females but both sexes crossed major roads much less frequently than minor roads. Our findings regarding the influence of landscape and habitat features on movement patterns of Florida black bears could be useful for planning effective wildlife corridors and understanding how future residential or commercial development and road expansions may affect animal movement.


2020 ◽  
Vol 47 (4) ◽  
pp. 359
Author(s):  
Dana L. Karelus ◽  
J. Walter McCown ◽  
Brian K. Scheick ◽  
Madelon van de Kerk ◽  
Benjamin M. Bolker ◽  
...  

Context Animals' use of space and habitat selection emerges from their movement patterns, which are, in turn, determined by their behavioural or physiological states and extrinsic factors. Aim The aims of the present study were to investigate animal movement and incorporate the movement patterns into habitat selection analyses using Global Positioning System (GPS) location data from 16 black bears (Ursus americanus) in a fragmented area of Florida, USA. Methods Hidden Markov models (HMMs) were used to discern the movement patterns of the bears. These results were then used in step-selection functions (SSFs) to evaluate habitat selection patterns and the factors influencing these patterns. Key results HMMs revealed that black bear movement patterns are best described by three behavioural states: (1) resting (very short step-lengths and large turning angles); (2) encamped (moderate step-lengths and large turning angles); and (3) exploratory (long step-lengths and small turning angles). Bears selected for forested wetlands and marsh wetlands more than any other land cover type, and generally avoided urban areas in all seasons and when in encamped and exploratory behavioural states. Bears also chose to move to locations farther away from major roads. Conclusions Because habitat selection is influenced by how animals move within landscapes, it is essential to consider animals' movement patterns when making inferences about habitat selection. The present study achieves this goal by using HMMs to first discern black bear movement patterns and associated parameters, and by using these results in SSFs to investigate habitat selection patterns. Thus, the methodological framework developed in this study effectively incorporates state-specific movement patterns while making inferences regarding habitat selection. The unified methodological approach employed here will contribute to an improved understanding of animal ecology as well as informed management decisions. Implications Conservation plans focused on preserving forested wetlands would benefit bears by not only providing habitat for resting and foraging, but also by providing connectivity through fragmented landscapes. Additionally, the framework could be applied to species that follow annual cycles and may provide a tool for investigating how animals are using dispersal corridors.


2019 ◽  
Vol 46 (1) ◽  
pp. 76 ◽  
Author(s):  
Dana L. Karelus ◽  
J. Walter McCown ◽  
Brian K. Scheick ◽  
Madelon van de Kerk ◽  
Benjamin M. Bolker ◽  
...  

Context Animals’ use of space and habitat selection emerges from their movement patterns, which are, in turn, determined by their behavioural or physiological states and extrinsic factors. Aim The aims of the present study were to investigate animal movement and incorporate the movement patterns into habitat selection analyses using Global Positioning System (GPS) location data from 16 black bears (Ursus americanus) in a fragmented area of Florida, USA. Methods Hidden Markov models (HMMs) were used to discern the movement patterns of the bears. These results were then used in step-selection functions (SSFs) to evaluate habitat selection patterns and the factors influencing these patterns. Key results HMMs revealed that black bear movement patterns are best described by three behavioural states: (1) resting (very short step-lengths and large turning angles); (2) encamped (moderate step-lengths and large turning angles); and (3) exploratory (long step-lengths and small turning angles). Bears selected for forested wetlands and marsh wetlands more than any other land cover type, and generally avoided urban areas in all seasons and when in encamped and exploratory behavioural states. Bears also chose to move to locations farther away from major roads. Conclusions Because habitat selection is influenced by how animals move within landscapes, it is essential to consider animals’ movement patterns when making inferences about habitat selection. The present study achieves this goal by using HMMs to first discern black bear movement patterns and associated parameters, and by using these results in SSFs to investigate habitat selection patterns. Thus, the methodological framework developed in this study effectively incorporates state-specific movement patterns while making inferences regarding habitat selection. The unified methodological approach employed here will contribute to an improved understanding of animal ecology as well as informed management decisions. Implications Conservation plans focused on preserving forested wetlands would benefit bears by not only providing habitat for resting and foraging, but also by providing connectivity through fragmented landscapes. Additionally, the framework could be applied to species that follow annual cycles and may provide a tool for investigating how animals are using dispersal corridors.


Oryx ◽  
2021 ◽  
pp. 1-9
Author(s):  
Helen M. K. O'Neill ◽  
Sarah M. Durant ◽  
Stefanie Strebel ◽  
Rosie Woodroffe

Abstract Wildlife fences are often considered an important tool in conservation. Fences are used in attempts to prevent human–wildlife conflict and reduce poaching, despite known negative impacts on landscape connectivity and animal movement patterns. Such impacts are likely to be particularly important for wide-ranging species, such as the African wild dog Lycaon pictus, which requires large areas of continuous habitat to fulfil its resource requirements. Laikipia County in northern Kenya is an important area for wild dogs but new wildlife fences are increasingly being built in this ecosystem. Using a long-term dataset from the area's free-ranging wild dog population, we evaluated the effect of wildlife fence structure on the ability of wild dogs to cross them. The extent to which fences impeded wild dog movement differed between fence designs, although individuals crossed fences of all types. Purpose-built fence gaps increased passage through relatively impermeable fences. Nevertheless, low fence permeability can lead to packs, or parts of packs, becoming trapped on the wrong side of a fence, with consequences for population dynamics. Careful evaluation should be given to the necessity of erecting fences; ecological impact assessments should incorporate evaluation of impacts on animal movement patterns and should be undertaken for all large-scale fencing interventions. Where fencing is unavoidable, projects should use the most permeable fencing structures possible, both in the design of the fence and including as many purpose-built gaps as possible, to minimize impacts on wide-ranging wildlife.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Patricia Kerches-Rogeri ◽  
Danielle Leal Ramos ◽  
Jukka Siren ◽  
Beatriz de Oliveira Teles ◽  
Rafael Souza Cruz Alves ◽  
...  

Abstract Background There is growing evidence that individuals within populations can vary in both habitat use and movement behavior, but it is still not clear how these two relate to each other. The aim of this study was to test if and how individual bats in a Stunira lilium population differ in their movement activity and preferences for landscape features in a correlated manner. Methods We collected data on movements of 27 individuals using radio telemetry. We fitted a heterogeneous-space diffusion model to the movement data in order to evaluate signals of movement variation among individuals. Results S. lilium individuals generally preferred open habitat with Solanum fruits, regularly switched between forest and open areas, and showed high site fidelity. Movement variation among individuals could be summarized in four movement syndromes: (1) average individuals, (2) forest specialists, (3) explorers which prefer Piper, and (4) open area specialists which prefer Solanum and Cecropia. Conclusions Individual preferences for landscape features plus food resource and movement activity were correlated, resulting in different movement syndromes. Individual variation in preferences for landscape elements and food resources highlight the importance of incorporating explicitly the interaction between landscape structure and individual heterogeneity in descriptions of animal movement.


Author(s):  
Glenn Vorhes ◽  
Ernest Perry ◽  
Soyoung Ahn

Truck parking is a crucial element of the United States’ transportation system as it provides truckers with safe places to rest and stage for deliveries. Demand for truck parking spaces exceeds supply and shortages are especially common in and around urban areas. Freight operations are negatively affected as truck drivers are unable to park in logistically ideal locations. Drivers may resort to unsafe practices such as parking on ramps or in abandoned lots. This report seeks to examine the potential parking availability of vacant urban parcels by establishing a methodology to identify parcels and examining whether the identified parcels are suitable for truck parking. Previous research has demonstrated that affordable, accessible parcels are available to accommodate truck parking. When used in conjunction with other policies, adaptation of urban sites could help reduce the severity of truck parking shortages. Geographic information system parcel and roadway data were obtained for one urban area in each of the 10 Mid America Association of Transportation Officials region states. Area and proximity filters were applied followed by spectral analysis of satellite imagery to identify candidate parcels for truck parking facilities within urban areas. The automated processes created a ranked short list of potential parcels from which those best suited for truck parking could be efficiently identified for inspection by satellite imagery. This process resulted in a manageable number of parcels to be evaluated further by local knowledge metrics such as availability and cost, existing infrastructure and municipal connections, and safety.


Sign in / Sign up

Export Citation Format

Share Document