Initial dispersal behavior and survival of non-native juvenile Burmese pythons (Python bivittatus) in South Florida

BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Shannon E. Pittman ◽  
Ian A. Bartoszek

Abstract Background Dispersal behavior is a critical component of invasive species dynamics, impacting both spatial spread and population density. In South Florida, Burmese pythons (Python bivittatus) are an invasive species that disrupt ecosystems and have the potential to expand their range northward. Control of python populations is limited by a lack of information on movement behavior and vital rates, especially within the younger age classes. We radio-tracked 28 Burmese pythons from hatching until natural mortality for approximately 3 years. Pythons were chosen from 4 clutches deposited by adult females in 4 different habitats: forested wetland, urban interface, upland pine, and agricultural interface. Results Known-fate survival estimate was 35.7% (95% CI = 18% - 53%) in the first 6 months, and only 2 snakes survived 3 years post hatching. Snakes moving through ‘natural’ habitats had higher survival than snakes dispersing through ‘modified’ habitats in the first 6- months post-hatching. Predation was the most common source of mortality. Snakes from the agricultural interface utilized canals and displayed the largest net movements. Conclusions Our results suggest that pythons may have lower survival if clutches are deposited in or near urbanized areas. Alternatively, juvenile pythons could quickly disperse to new locations by utilizing canals that facilitate linear movement. This study provides critical information about behavioral and life history characteristics of juvenile Burmese pythons that will inform management practices.

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Claire S. Teitelbaum ◽  
Jeffrey Hepinstall-Cymerman ◽  
Anjelika Kidd-Weaver ◽  
Sonia M. Hernandez ◽  
Sonia Altizer ◽  
...  

Abstract Background Mobile animals transport nutrients and propagules across habitats, and are crucial for the functioning of food webs and for ecosystem services. Human activities such as urbanization can alter animal movement behavior, including site fidelity and resource use. Because many urban areas are adjacent to natural sites, mobile animals might connect natural and urban habitats. More generally, understanding animal movement patterns in urban areas can help predict how urban expansion will affect the roles of highly mobile animals in ecological processes. Methods Here, we examined movements by a seasonally nomadic wading bird, the American white ibis (Eudocimus albus), in South Florida, USA. White ibis are colonial wading birds that forage on aquatic prey; in recent years, some ibis have shifted their behavior to forage in urban parks, where they are fed by people. We used a spatial network approach to investigate how individual movement patterns influence connectivity between urban and non-urban sites. We built a network of habitat connectivity using GPS tracking data from ibis during their non-breeding season and compared this network to simulated networks that assumed individuals moved indiscriminately with respect to habitat type. Results We found that the observed network was less connected than the simulated networks, that urban-urban and natural-natural connections were strong, and that individuals using urban sites had the least-variable habitat use. Importantly, the few ibis that used both urban and natural habitats contributed the most to connectivity. Conclusions Habitat specialization in urban-acclimated wildlife could reduce the exchange of propagules and nutrients between urban and natural areas, which has consequences both for beneficial effects of connectivity such as gene flow and for detrimental effects such as the spread of contaminants or pathogens.


EDIS ◽  
2016 ◽  
Vol 2016 (7) ◽  
Author(s):  
Sonja C. Crawford ◽  
Christa L. Kirby ◽  
Tycee Prevatt ◽  
Brent A. Sellers ◽  
Maria L. Silveira ◽  
...  

The University of Florida / IFAS South Florida Beef Forage Program (SFBFP) is composed of county Extension faculty and state specialists.  The members, in conjunction with the UF/IFAS Program Evaluation and Organizational Development unit, created a survey in 1982, which is used to evaluate ranch management practices.  The survey is updated and distributed every 5 years to ranchers in 14 South Florida counties: Charlotte, Collier, DeSoto, Glades, Hardee, Hendry, Highlands, Hillsborough, Lee, Manatee, Martin, Okeechobee, Polk, and Sarasota.  The responses are anonymous.  


1995 ◽  
Vol 31 (8) ◽  
pp. 109-121 ◽  
Author(s):  
D. L. Anderson ◽  
E. G. Flaig

Restoration and enhancement of Lake Okeechobee and the Florida Everglades requires a comprehensive approach to manage agricultural runoff. The Florida Surface Water Improvement and Management (SWIM) Act of 1987 was promulgated to develop and implement plans for protecting Florida waters. The South Florida Water Management District was directed by Florida legislature to develop management plans for Lake Okeechobee (SWIM) and the Everglades ecosystem (Marjory Stoneman Douglas Everglades Protection Act of 1991). These plans require agriculture to implement best management practices (BMPs) to reduce runoff phosphorus (P) loads. The Lake Okeechobee SWIM plan established a P load reduction target for Lake Okeechobee and set P concentration limitations for runoff from non-point source agricultural sources. Agricultural water users in the Everglades Agricultural Area (EAA) are required to develop farm management plans to reduce P loads from the basin by 25%. The Everglades Forever Act of 1994 additionally emphasized linkage of these landscapes and consequent protection and restoration of the Everglades. Agricultural BMPs are being developed and implemented to comply with water management, environmental, and regulatory standards. Although BMPs are improving runoff water quality, additional research is necessary to obtain the best combination of BMPs for individual farms. This paper summarizes the development of comprehensive water management in south Florida and the agricultural BMPs carried out to meet regulatory requirements for Lake Okeechobee and the Everglades.


2021 ◽  
Author(s):  
Nicole Beyer ◽  
Felix Kirsch ◽  
Doreen Gabriel ◽  
Catrin Westphal

Abstract Context Pollinator declines and functional homogenization of farmland insect communities have been reported. Mass-flowering crops (MFC) can support pollinators by providing floral resources. Knowledge about how MFC with dissimilar flower morphology affect functional groups and functional trait compositions of wild bee communities is scarce. Objective We investigated how two morphologically different MFC, land cover and local flower cover of semi-natural habitats (SNH) and landscape diversity affect wild bees and their functional traits (body size, tongue length, sociality, foraging preferences). Methods We conducted landscape-level wild bee surveys in SNH of 30 paired study landscapes covering an oilseed rape (OSR) (Brassica napus L.) gradient. In 15 study landscapes faba beans (Vicia faba L.) were grown, paired with respective control landscapes without grain legumes. Results Faba bean cultivation promoted bumblebees (Bombus spp. Latreille), whereas non-Bombus densities were only driven by the local flower cover of SNH. High landscape diversity enhanced wild bee species richness. Faba bean cultivation enhanced the proportions of social wild bees, bees foraging on Fabaceae and slightly of long-tongued bumblebees. Solitary bee proportions increased with high covers of OSR. High local SNH flower covers mitigated changes of mean bee sizes caused by faba bean cultivation. Conclusions Our results show that MFC support specific functional bee groups adapted to their flower morphology and can alter pollinators` functional trait composition. We conclude that management practices need to target the cultivation of functionally diverse crops, combined with high local flower covers of diverse SNH to create heterogeneous landscapes, which sustain diverse pollinator communities.


2021 ◽  
Vol 53 (3) ◽  
pp. 271-282
Author(s):  
Mónika Sinigla ◽  
Erzsébet Szurdoki ◽  
László Lőkös ◽  
Dénes Bartha ◽  
István Galambos ◽  
...  

AbstractThe maintenance of protected lichen species and their biodiversity in general depends on good management practices based on their distribution and habitat preferences. To date, 10 of the 17 protected lichen species of Hungary have been recorded in the Bakony Mts including the Balaton Uplands region. Habitat preferences of three protected Cladonia species (C. arbuscula, C. mitis and C. rangiferina) growing on underlying rocks of red sandstone, basalt, Pannonian sandstone and gravel were investigated by detailed sampling. We recorded aspect, underlying rock type, soil depth, pH and CaCO3 content, habitat type (as defined by the General National Habitat Classification System Á-NÉR), all species of lichen, bryophyte and vascular plants as well as percentage cover of exposed rock, total bryophytes, lichens, vascular plants and canopy, degree of disturbance and animal impacts. Sporadic populations of these species mostly exist at the top of hills and mountains in open acidofrequent oak forests, but they may occur in other habitats, such as closed acidofrequent oak forests, slope steppes on stony soils, siliceous open rocky grasslands, open sand steppes, wet and mesic pioneer scrub and dry Calluna heaths. Cladonia rangiferina was found to grow beneath higher canopy cover than either C. arbuscula or C. mitis in the Balaton Uplands. Furthermore, there were significant differences in canopy cover between occupied and unoccupied quadrats in the case of all three species. Cladonia rangiferina is a good indicator species of natural habitats in Hungary due to its restricted distribution and low ecological tolerance. These results may lead to the adoption of effective conservation methods (e.g. game exclusion, artificial dispersal) in the future.


2009 ◽  
Vol 38 (4) ◽  
pp. 1683-1693 ◽  
Author(s):  
Samira H. Daroub ◽  
Timothy A. Lang ◽  
Orlando A. Diaz ◽  
Sabine Grunwald

2021 ◽  
Vol 9 ◽  
Author(s):  
Panlong Wu ◽  
Piaopiao Dai ◽  
Meina Wang ◽  
Sijie Feng ◽  
Aruhan Olhnuud ◽  
...  

Bees provide key pollination services for a wide range of crops. Accumulating evidence shows the effect of semi-natural habitats at the landscape level and local management practices on bee diversity in fields. However, most of the evidence is derived from studies in North America and Europe. Whether this paradigm is applicable in China, which is characterized by smallholder-dominated agricultural landscapes, has rarely been studied. In this study, we aimed to investigate how bee diversity affected apple production, and how landscape and local variables affected bee diversity and species composition on the Northern China Plain. The results showed that bees significantly increased apple fruit set compared to bagged controls. Wild bee diversity was positively related to apple seed numbers. Higher seed numbers reduced the proportion of deformed apples and thus increased fruit quality. Wild bee abundance was positively correlated with flowering ground cover, and both the abundance and species richness of wild bees were positively affected by the percentage of semi-natural habitats. We conclude that apple quality can benefit from ecological intensification comprising the augmentation of wild bees by semi-natural habitats and flowering ground cover. Future pollination management should therefore reduce the intensification level of management at both the local and landscape scales.


2017 ◽  
Vol 4 (1) ◽  
pp. 148-160
Author(s):  
Arjun C.P ◽  
Anoop V.K ◽  
Tijo K.J ◽  
Anoopkumar T.K ◽  
Roshnath R

Butterfly diversity was recorded from Nov (2013) - May (2014) in Pookode region. A total number of 128 species recorded from the five families; Nymphalidae (46 species) Lycaenidae (28 species), Hesperiidae (22 species), Pieridae (17 species) and Papilionidae (15 species) respectively. During the survey invasive plant species were also recorded. There were 36 species of invasive plants from 18 families identified from the study area. More butterflies were attracted towards nectar offering invasive plants. Chromolaena odorata, Ipomea cairica, Lantana camara, Merremia vitifolia, Mikania micrantha, Mimosa diplotricha, Pennisetumpolystachyon, Pteridium aquilinum, Quisqualis indica and Sphagneticola trilobata were the major invasive plants found in the Pookode region and their flower attracts butterfly for pollination. Even though nectar offered by the plants are supportive for growth, in long run these species can affect butterfly population bydeclining native host larval plant species for butterfly reproduction. Invasive species compete with the native flora and reduce its population. Management practices like physical, chemical and modern bio control measures could be used for eradicating of invasive plants. Wise use of invasive plants for other economical purpose such as bio-fuel, medicinal purpose, bio-pesticide and handicraft could be suggested. Successful management of invasive species are needed for conserving Lepidoptera fauna and other native biota of the area.


2021 ◽  
Vol 107 (3) ◽  
pp. 295-319
Author(s):  
Julia Renee Prince-Buitenhuys ◽  
Colleen M. Cheverko ◽  
Eric J. Bartelink ◽  
Veronica Wunderlich ◽  
Kristina Crawford

The long history of human-animal interactions in California prior to European contact is frequently not considered when setting ecological baselines and, by consequence, when planning conservation and management expectations and strategies for native species. This article reviews archaeological perspectives that explore the relationship between human niche construction, plant and wildlife populations, and human health in pre-European contact Central California, with an emphasis on the Central Valley and Delta, the surrounding foothills, and the San Francisco Bay Area. A summary of the archaeological record for Central California is provided, along with how niche construction and related evolutionary based models have been used in prehistoric California. Examples of the influences of human niche construction on flora, fauna, and human health from the archaeological and ethnographic record are then discussed. This information is tied to modern wildlife research and management practices that would serve contemporary fish and wildlife management given that human influences on species “natural” habitats and ecological baselines extends much further into the past than current ecological baselines and wildlife management strategies traditionally recognize.


2015 ◽  
Vol 37 (1) ◽  
pp. 21-35 ◽  
Author(s):  
Agnieszka Popiela ◽  
Andrzej Łysko ◽  
Zofia Sotek ◽  
Krzysztof Ziarnek

Abstract In Western Pomerania, as in other areas of Europe, alien species play an increasingly important role. In particular, invasive plants tend to spread rapidly and in large numbers which may reduce diversity of native species, leading to the phenomenon of “trivialisation of flora”, and transform ecosystems. The list of invasive species (32 taxa) includes alien species occurring throughout Western Pomerania, and penetrating natural or semi-natural habitats. The second group consists of potentially invasive species (23 taxa), i.e. those distributed across the area under study and tending to increase the number of their localities in semi-natural and natural habitats, taxa invasive only locally, as well as species with missing data, which does not currently allow including them into the first group. Invasive weeds, as well as some epecophytes and archaeophytes occurring only on anthropogenic sites and tending to spread, were not taken into account. Among hemiagriophytes, the most common and troublesome ones are: Conyza canadensis, Erigeron annuus, Lolium multiflorum, Lupinus polyphyllus, Solidago canadensis, S. gigantea. Among holoagriophytes, i.e. the taxa which received the highest naturalisation status, very expansive species, successful in land colonisation, like Acer negundo, Bidens frondosa, B. connata, Clematis vitalba, Elodea canadensis, Epilobium ciliatum, Heracleum sosnowskyi, Impatiens glandulifera, I. parviflora, Padus serotina, Quercus rubra and Robinia pseudoacacia, should be given particular attention. Among the invasive and potentially invasive species, most taxa penetrate plant communities of the Artemisietea and Molinio-Arrhenatheretea class, followed by Querco-Fagetea, Vaccinio-Piceetea, Stellarietea mediae, Salicetea purpurae and Koelerio-Corynophoretea. The number of invasive species is twice as high when compared to the situation of these species in Poland; on the contrary, the number of species inhabiting anthropogenic, semi-natural and natural habitats is two times lower, while that of holoagriophytes and hemiagriophytes is 56.3% and 43.7%, respectively. It seems that in the case of some invasive and potentially invasive species, a decrease in the number of their locations may be observed from the west to the east (e.g. for Acer negundo, Bromus carinatus, Clematis vitalba, Helianthus tuberosus, Lycium barbarum, Reynoutria japonica, Rosa rugosa, Vicia grandiflora). Distribution patterns for some species (e.g. for Parthenocytisus inserta or Xanthium albinum) are indicative of a likely major role of the Odra River valley in the spreading of invasive species. It should be kept in mind that the area of the North-West Poland is poorly examined in terms of its flora, so the results provided in this paper are tentative. Nevertheless, the maps illustrate colonisation trends and directions and, moreover, have been so far the only attempt to synthesise this problem in NW Poland.


Sign in / Sign up

Export Citation Format

Share Document