scholarly journals Analysis of pigments and damages for the 19th century White-robed Water-moon Avalokitesvara Painting in Gongju Magoksa Temple, Republic of Korea

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hye Ri Yang ◽  
Chan Hee Lee ◽  
Jeongeun Yi

AbstractThe White-Robed Water-Moon Avalokiteshvara painting displayed on the rear wall of Daegwangbojeon (main hall) in Magoksa temple, is one of the representative Buddhist paintings in the late nineteenth century of Korea, and a valuable resource for understanding the coloring techniques and characteristics of Buddhist paintings in terms of expression and description in landscape painting. In this painting, the contours and colored surface remain undamaged, but blistering and exfoliation appear on some pigment layers. Furthermore, the partial decomposition of wooden materials due to wood-decay fungi and insect damage were found on the rear wall requiring proper treatment for long-term conservation. As the results of chromaticity and P-XRF analysis regarding the color pigment layer of the painting, the pigments were classified into ten types. The results suggest that the colors other than blue, green, yellow, red, black, and white were prepared by mixing two or more pigments. The types of pigments according to colors, were determined as traditional pigments with azurite; emerald green or clinoatacamite; 0 massicot; minium or hematite; Chinese ink; and kaolin, white lead, and gypsum, respectively. Violet and pink colors were assumed to have been prepared by mixing white with blue and red. In most of these pigments, small amounts of synthetic compositions from the modern era were detected at many points.

2021 ◽  
Author(s):  
Hye Ri Yang ◽  
Chan Hee Lee ◽  
Jeongeun Yi

Abstract The White-Robed Water-Moon Avalokiteshvara painting displayed on the rear wall of Daegwangbojeon (main hall) in Magoksa temple, is one of the representative Buddhist paintings in the late 19th century of Korea, and a valuable resource for understanding the coloring techniques and characteristics of Buddhist paintings in terms of expression and description in landscape painting. In this painting, the contours and colored surface remain undamaged, but blistering and exfoliation appear on some pigment layers. Furthermore, the partial decomposition of wooden materials due to wood-decay fungi and insect damage were found on the rear wall requiring proper treatment for long-term conservation. As the results of chromaticity and P-XRF analysis regarding the color pigment layer of the painting, the pigments were classified into ten types. The results suggest that the colors other than blue, green, yellow, red, black, and white were prepared by mixing two or more pigments. The types of pigments according to colors, were determined as traditional pigments with azurite; emerald green or clinoatacamite; massicot; minium or hematite; Chinese ink; and kaolin, white lead, and gypsum, respectively. Violet and pink colors were assumed to have been prepared by mixing white with blue and red. In most of these pigments, small amounts of synthetic compositions from the modern era were detected at many points.


1989 ◽  
Vol 35 (2) ◽  
pp. 283-288 ◽  
Author(s):  
Magdalena Y. Giron ◽  
Jeffrey J. Morrell

The microfungi present in transmission poles of preservative-treated Douglas-fir remedially treated with one of four fumigants were determined by removing increment cores 5 and 15 years later and culturing them on nutrient media. The microfungi isolated from the wood were then characterized according to their ability to cause a loss in wood weight, to tolerate conventional wood preservatives, and to tolerate wood fumigants. The wood treated with fumigants 5 years earlier was sparsely colonized, while that treated 15 years earlier was colonized more heavily. In general, many of the same species of microfungi occurred in treated and untreated poles. In both, fungal populations were dominated by Scytalidium and Trichoderma spp. None of the isolates caused losses in wood weight greater than 5%, but several exhibited tolerance to short fumigant exposures. The latter trait may help explain the presence of these fungi in wood still containing measurable levels of fumigant. The presence in fumigant-treated wood of fungi previously shown to be antagonistic toward wood decay fungi may help explain the ability of the four test fumigants to provide long-term protection.Key words: fungi, Scytalidium, Trichoderma, colonization, Douglas-fir.


Holzforschung ◽  
2017 ◽  
Vol 71 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Miha Humar ◽  
Davor Kržišnik ◽  
Boštjan Lesar ◽  
Nejc Thaler ◽  
Aleš Ugovšek ◽  
...  

Abstract Thermal modification is the most important commercial modification procedure. Thermally modified (TM) wood has improved durability, but its performance does not meet expectations predominately under moist conditions. To reduce water uptake of TM wood, Norway spruce specimens were treated with suspensions of a natural wax by dipping impregnation (DipI) or by vacuum-pressure impregnation (VPI). Wax-treated specimens were subsequently TM at 185, 200, 215, and 230°C. Control specimens were heated up to 100°C only. Contact angle (CA), short-term and long-term water uptake, bending strength, and performance against wood decay fungi of the resulting material were determined. The results show that a combination of wax treatment and thermal modification have a synergistic effect that considerably improves hydrophobicity, reduces liquid water uptake, slows down water vapor uptake, and improves the resistance against fungal decay of the treated material.


Author(s):  
Cédric Cabral Almada ◽  
Mathilde Montibus ◽  
Frédérique Ham-Pichavant ◽  
Sandra Tapin-Lingua ◽  
Gilles Labat ◽  
...  

1985 ◽  
Vol 63 (2) ◽  
pp. 337-339 ◽  
Author(s):  
Elmer L. Schmidt

Influences of eight saturated aliphatic acids (C5–C10, C12, and C16) on basidiospores of four isolates of wood-decay fungi (Poria tenuis and Trametes hispida, white rot fungi, and two isolates of the brown rot fungus Gloeophyllum trabeum) were observed in vitro. Spore responses after 24 h on malt extract agar containing 10, 102 or 103 ppm of each acid included normal germination, delay of germ tube emergence, vacuolation and degeneration of spore cytoplasm, and prevention of germ tube development without spore destruction. Acids of chain length C5–C10 prevented spore germination and killed spores of all fungi at concentrations of 20–50 ppm in media, whereas other acids tested were less active. Spore germination assay of decay fungi may prove useful as a screening tool to compare potency of wood preservatives.


2009 ◽  
pp. 151-181 ◽  
Author(s):  
Sarah Watkinson ◽  
Dan Bebber ◽  
Peter Darrah ◽  
Mark Fricker ◽  
Monika Tlalka ◽  
...  

2012 ◽  
Vol 518-523 ◽  
pp. 29-33 ◽  
Author(s):  
Peng Fei Xiao ◽  
Toshio Mori ◽  
Ryuichiro Kondo

Although heptachlor epoxide is one of the most persistent organic pollutants (POPs) that cause serious environmental problems, there is very limited information of the biodegradation of heptachlor epoxide by microorganisms, and no systematic study on the metabolic products and pathway of endrin by microorganisms has been conducted. Wood-decay fungi can degrade a wide spectrum of recalcitrant organopollutants, including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated biphenyls (PCBs). In this study, 18 wood-decay fungi strains of genus Phlebia were investigated for their ability to degrade heptachlor epoxide, and Phlebia acanthocystis, Phlebia brevispora, Phlebia lindtneri and Phlebia aurea removed about 16, 16, 22 and 25% of heptachlor epoxide, respectively, after 14 days of incubation. Heptachlor diol and 1-hydroxy-2,3-epoxychlordene were detected in these fungal cultures as metabolites by gas chromatography and mass spectrometry (GC/MS), suggesting that the hydrolysis reaction in the epoxide ring and substitution of chlorine atom with hydroxyl group in C1 position occur in bioconversion of heptachlor epoxide by selected wood-decay fungi, respectively. This is the first report describing the metabolites of heptachlor epoxide by microorganisms.


2017 ◽  
Vol 31 (4) ◽  
pp. 566-570 ◽  
Author(s):  
Georgea S. Nogueira-Melo ◽  
Paulo J. P. Santos ◽  
Tatiana B. Gibertoni

Hoehnea ◽  
2016 ◽  
Vol 43 (4) ◽  
pp. 575-581 ◽  
Author(s):  
Thiara Siqueira Bento ◽  
Luce Maria Brandão Torres ◽  
Mauricio Batista Fialho ◽  
Vera Lúcia Ramos Bononi

ABSTRACT White-rot basidiomycetes are able to deteriorate wood products and be pathogenic to living trees, requiring, thus requiring control. The tropical flora is an important source of eco-friendly antifungal compounds; however, the knowledge on how leaf extracts affect the fungal physiology is limited. Therefore, in the present work we investigated the influence of ethanolic leaf extracts of Casearia sylvestris and C. decandra at 0.1 mg mL-1 on the production of ligninolytic enzymes by Trametes villosa, Ganoderma australe and Pycnoporus sanguineus. Overall, the extracts inhibited the mycelial growth and the production of biomass. Additionally, C. sylvestris extract reduced the production of manganese peroxidase and laccase; however, the exposure to C. decandra extract resulted in variable responses. Therefore, enzymes related to lignin degradation are potential targets to control wood decay fungi by plant bioactive compounds, as their ability to colonize the substrate may be impaired.


Sign in / Sign up

Export Citation Format

Share Document