Water Stress Effects on Growth, Yield and Water Use Efficiency of Hemarthria Compressa

2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.

2016 ◽  
Vol 166 ◽  
pp. 130-138 ◽  
Author(s):  
Ruttanachira Ruttanaprasert ◽  
Sanun Jogloy ◽  
Nimitr Vorasoot ◽  
Thawan Kesmala ◽  
Rameshwar S. Kanwar ◽  
...  

2015 ◽  
Vol 7 (3) ◽  
pp. 338-344 ◽  
Author(s):  
Hamid-Reza FALLAHI ◽  
Reza TAHERPOUR KALANTARI ◽  
Mahsa AGHHAVANI-SHAJARI ◽  
Mohammad-Ghasem SOLTANZADEH

Sustainable use of water resources in agriculture is a necessity for many arid countries. In order to investigate the effect of water deficit, irrigation after 120 (control), 155 (moderate water stress) and 190 mm (sever water stress) pan evaporation and super absorbent polymer rates (SAP) (0, 30, 60 and 90 kg ha-1) on growth, yield and water use efficiency of cotton, an experiment was conducted as split plot based on a randomized complete block design with three replications. Moreover, the effect of water quality (distilled water and solutions of 0.25, 0.5, 0.75, 1 and 1.25% NaCl) was investigated on water holding capacity by SAP. Results revealed that moderate water stress (irrigation intervals of aprox. 15 days) along with 60 kg ha-1 SAP application was the best treatment in terms of growth and yield indices of cotton. The results for plant height, plant dry weight, boll number per plant and fiber yield in this treatment were 16, 28, 42 and 10% higher than control treatment, respectively. Water deficit and SAP application improved the water use efficiency (WUE) of cotton. The amount of WUE in moderate water stress treatment along with consumption of 60 or 90 kg ha-1 SAP was 26% higher than for control treatment. In addition, water holding capacity by SAP in distilled water treatment was 7 times higher than in the case of 1.25% NaCl solution. The overall results showed that irrigation deficit and SAP application are two appropriate strategies for crop production in areas affected by drought stress, especially if low saline water sources are used.


2017 ◽  
Author(s):  
Qian Cai ◽  
Yulong Zhang ◽  
Zhanxiang Sun ◽  
Jiaming Zheng ◽  
Wei Bai ◽  
...  

Abstract. There is a significant potential to increase yield of maize (Zea mays L.), a global major crop, in rain-fed condition in semi-arid regions, since the large yield gap is mainly caused by frequent droughts halfway the crop growing period due to uneven distribution of rainfall. It is questionable if irrigation systems are economically required in such a region since total amount of rainfall generally meet the crop requirement. This study therefore aimed to quantitatively determine the effects of water stress during jointing to filling stages on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter. The experiments consisted of three treatments: (1) no water stress; (2) mild water stress; and (3) severe water stress. Maize yield in mild water stress across two year was not significantly affected, while severe stress reduced yield by 56 %. Water stress decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting a no effect on root surface area. WU under water stress was decreased, while WUE for maize above-ground dry matter under mild water stress was increased by 20 % across all years, and 16 % for grain yield WUE. Our results demonstrates that irrigation systems in studied region might be not economically necessary because the mild water stress does not reduce crop yield. The study helps to understand crop responses to water stress during critical water-sensitive period and to mitigate drought risk in dry land agriculture.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 548 ◽  
Author(s):  
Auges Gatabazi ◽  
Diana Marais ◽  
Martin J. Steyn ◽  
Hintsa T. Araya ◽  
Motiki M. Mofokeng ◽  
...  

Ginger species play an important economic role as medicinal plants, food flavourings, and dietary supplements. Products from ginger, including oil and fresh and dried rhizomes can be used to treat malaria, asthma, headaches, and act as anti-inflammatory and anti-microbial agents. The cultivation of wild plant species can alleviate the pressure from harvesting from the wild. Under cultivation, the major constraints on crop yield and quality are water availability and plant nutrition. Therefore, the impact of water stress on commercial and African ginger was assessed in the rain shelter study. Irrigation treatments were based on the maximum allowable depletion (MAD) levels of plant available water in the root zone (T1: 20–25% MAD, the control; T2: 40–45% MAD; T3: 60–65% MAD; T4: 80–85% MAD). As water stress decreased, the plant height and number of stems per plant of both plant species were positively affected. The number of open stomata was higher for well-watered and less stressed treatments in both ginger species. Higher fresh and dry rhizome yields were recorded for commercial ginger at all water treatments as compared to those from African ginger. In general, water use efficiency (WUE) of fresh and dry rhizome yield was higher for commercial ginger as compared to the indigenous African ginger, while moderately stressed treatments generally resulted in the highest WUE for both species.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 111-128
Author(s):  
Víctor M. Olalde G. ◽  
J. Alberto Escalante E. ◽  
Angel A. Mastache L.

SUMMARYDuring the rainy season of 1998, a field experiment was established in Cocula, Guerrero (hot subhumid climate, Awo) and in Montecillo, México (semiarid climate, BS1), to evaluate the effect of nitrogen (0, 10 and 20 g m-2) and environment on phenology, yield and its components, water use efficiency (WUE), and crop evapotranspiration (ETc) and heat units (HU) accumulated during the growth cycle of sunflower (Helianthus annuus L.) cv. Victoria. The crop was planted on June 1 at a density of 7.5 pl m-2 in both climates. In Cocula, maximum and minimum temperatures were more extreme and rainfall was more intense, while soil was poor in total nitrogen, compared with Montecillo. Crop growth, yield and its components, and water use efficiency were affected significantly by the environment, nitrogen and the interaction environment * nitrogen. The crop cycle in the hot environment was 36 days shorter, with a greater accumulation of HU and ETc. Yield and its components and water use efficiency were significantly higher in Cocula. Nitrogen positively affected the evaluated variables. The interactive effect of environment * nitrogen was observed clearly, since in Cocula there was response to the application of nitrogen in most of the variables evaluated, while in Montecillo there was not.


Sign in / Sign up

Export Citation Format

Share Document