scholarly journals Stability study of opioids and benzodiazepines in urine samples by liquid chromatography tandem mass spectrometry

Author(s):  
Robert Brent Dixon ◽  
Flaubert Mbeunkui ◽  
Joseph V Wiegel
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Caroline E. West ◽  
Blaine N. Rhodes

A viable, quick, and reliable method for determining urinary creatinine by liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and used to evaluate spot urine samples collected for the Washington Environmental Biomonitoring Survey (WEBS): part of the Washington State Department of Health, Public Health Laboratories (PHL). 50 µL of urine was mixed with a 1 : 1 acetonitrile/water solution containing deuterated creatinine as the internal standard and then analyzed by LC/MS/MS. Utilizing electrospray ionization (ESI) in positive mode, the transition ions for creatinine and creatinine-d3were determined to be 114.0 to 44.1 (quantifier), 114.0 to 86.1 (qualifier), and 117.0 to 47.1 (creatinine-d3). The retention time for creatinine was 0.85 minutes. The linear calibration range was 20–4000 mg/L, with a limit of detection at 1.77 mg/L and a limit of quantitation at 5.91 mg/L. LC/MS/MS and the colorimetric Jaffé reaction were associated significantly (Pearsonr=0.9898andR2=0.9797,ρ≤0.0001). The LC/MS/MS method developed at the PHL to determine creatinine in the spot urine samples had shorter retention times, and was more sensitive, reliable, reproducible, and safer than other LC/MS/MS or commercial methods such as the Jaffé reaction or modified versions thereof.


2004 ◽  
Vol 50 (12) ◽  
pp. 2345-2352 ◽  
Author(s):  
Robert L Taylor ◽  
Stefan K Grebe ◽  
Ravinder J Singh

Abstract Background: Measurements of serum or urine concentrations of synthetic glucocorticoids are useful for assessing suspected iatrogenic hypothalamic-pituitary-adrenal axis suppression and Cushing syndrome. We have developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS) assay for the simultaneous quantitative analysis of beclomethasone dipropionate, betamethasone, budesonide, dexamethasone, fludrocortisone, flunisolide, fluorometholone, fluticasone propionate, megestrol acetate, methylprednisolone, prednisolone, prednisone, triamcinolone, and triamcinolone acetonide. Methods: Stable isotopes of cortisol-9,11,12,12-d4 and triamcinolone-d1 acetonide-d6 were added as internal standards to calibrators, controls, and unknown samples. After acetonitrile precipitation, these samples were extracted with methylene chloride, and the extracts were washed and dried. Reconstituted extract (15 μL) was injected on a reversed-phase column and analyzed by LC-MS/MS in positive-ion mode. Assay precision, accuracy, linearity, and sample stability were determined by use of enriched samples. Clinical validation included analysis of 8 serum and 20 urine samples from patients with undetectable cortisol concentrations and analysis of different types of tablets. Results: Functional assay sensitivity was as low as 0.6–1.6 nmol/L for all compounds except for triamcinolone (7.6 nmol/L). Interassay CVs were 3.0–20% for concentrations of 0.6–364 nmol/L for all analytes. Recoveries of all analytes (except triamcinolone in serum) were 82–138% at 19.2–693 nmol/L. All but one of the serum and urine samples from patients who were tested because of suppressed cortisol concentrations contained at least one synthetic steroid. Tablet analysis recovered 75% of the synthetic steroids in suspected drugs. Conclusions: LC-MS/MS allows simultaneous quantitative detection of various synthetic steroids in serum, plasma, urine, and tablets. This provides a valuable tool for evaluating the clinical effects of topical and systemic synthetic corticosteroids.


Sign in / Sign up

Export Citation Format

Share Document