scholarly journals Using the life grid interview technique in STEM education research

Author(s):  
Ashley A. Rowland ◽  
Dimitri R. Dounas-Frazer ◽  
Laura Ríos ◽  
H. J. Lewandowski ◽  
Lisa A. Corwin

Abstract Background Qualitative interviewing is a common tool that has been utilized by science, technology, engineering, and mathematics (STEM) education researchers to explore and describe the experiences of students, educators, or other educational stakeholders. Some interviewing techniques use co-creation of an artifact, such as a personal timeline, as a unique way to elicit a detailed narrative from a respondent. The purpose of this commentary is to describe an interview artifact called a life grid. First used and validated in medical sociology to conduct life course research, we adapted the life grid for use in research on undergraduate STEM education. We applied the life grid interview technique to two contexts: (1) students in an advanced degree program reflecting on their entire undergraduate career as a biology major and (2) students in an undergraduate physics program reflecting on a multi-week lab project. Results We found that the life grid supported four important attributes of an interview: facilitation of the respondents’ agency, establishment of rapport between interviewers and respondents, enhanced depth of the respondents’ narratives, and the construction of more accurate accounts of events. We situate our experiences with respect to those attributes and compare them with the experiences detailed in the literature. Conclusions We conclude with recommendations for future use of the life grid technique in undergraduate STEM education research. Overall, we find the life grid to be a valuable tool to use when conducting interviews about phenomena with a chronological component.

2019 ◽  
Vol 18 (3) ◽  
pp. mr3
Author(s):  
Daniel L. Reinholz ◽  
Tessa C. Andrews

There has been a recent push for greater collaboration across the science, technology, engineering, and mathematics (STEM) fields in discipline-based education research (DBER). The DBER fields are unique in that they require a deep understanding of both disciplinary content and educational research. DBER scholars are generally trained and hold professional positions in discipline-specific departments. The professional societies with which DBER scholars are most closely aligned are also often discipline specific. This frequently results in DBER researchers working in silos. At the same time, there are many cross-cutting issues across DBER research in higher education, and DBER researchers across disciplines can benefit greatly from cross-disciplinary collaborations. This report describes the Breaking Down Silos working meeting, which was a short, focused meeting intentionally designed to foster such collaborations. The focus of Breaking Down Silos was institutional transformation in STEM education, but we describe the ways the overall meeting design and structure could be a useful model for fostering cross-­disciplinary collaborations around other research priorities of the DBER community. We describe our approach to meeting recruitment, premeeting work, and inclusive meeting design. We also highlight early outcomes from our perspective and the perspectives of the meeting participants.


Author(s):  
Haider Ali Bhatti

Research in undergraduate STEM education often requires the collection of student demographic data to assess outcomes related to diversity, equity, and inclusion. Unfortunately, this collection of demographic data continues to be constrained by socially constructed categories of race and ethnicity, leading to problematic panethnic groupings such as “Asian” and “Latinx.” Furthermore, these all-encompassing categories of race and ethnicity exasperate the problematic “underrepresented minority” (URM) label when only specific races and ethnicities are categorized as URMs.


Daedalus ◽  
2019 ◽  
Vol 148 (4) ◽  
pp. 29-46 ◽  
Author(s):  
Mary Sue Coleman ◽  
Tobin L. Smith ◽  
Emily R. Miller

Promoting excellence in undergraduate STEM (science, technology, engineering, and mathematics) education at major research universities is necessary to ensure that we have the STEM-literate workforce and general population required to propel the nation forward into the twenty-first century and beyond. This essay provides a brief contextual history of the Association of American Universities' (AAU) effort to improve the effectiveness of undergraduate STEM education at member campuses and delineates the specific goals of this initiative. The essay then illuminates the essential role of the academic department and department chair in achieving long-lasting change and improving the quality of undergraduate education. It also discusses critical strategies and approaches for promoting the most effective methods for undergraduate STEM teaching and learning, with numerous examples from AAU member universities. The essay concludes with an acknowledgment of key challenges and opportunities that continue to face undergraduate education at research universities.


Author(s):  
Kathryn Strong Hansen

AbstractGreater emphasis on ethical issues is needed in science, technology, engineering, and mathematics (STEM) education. The fiction for specific purposes (FSP) approach, using optimistic science fiction texts, offers a way to focus on ethical reflection that capitalizes on role models rather than negative examples. This article discusses the benefits of using FSP in STEM education more broadly, and then explains how using optimistic fictions in particular encourages students to think in ethically constructive ways. Using examples of science fiction texts with hopeful perspectives, example discussion questions are given to model how to help keep students focused on the ethical issues in a text. Sample writing prompts to elicit ethical reflection are also provided as models of how to guide students to contemplate and analyze ethical issues that are important in their field of study. The article concludes that the use of optimistic fictions, framed through the lens of professional ethics guidelines and reinforced through ethical reflection, can help students to have beneficial ethical models.


Author(s):  
Yeping Li ◽  
Alan H. Schoenfeld

AbstractMathematics is fundamental for many professions, especially science, technology, and engineering. Yet, mathematics is often perceived as difficult and many students leave disciplines in science, technology, engineering, and mathematics (STEM) as a result, closing doors to scientific, engineering, and technological careers. In this editorial, we argue that how mathematics is traditionally viewed as “given” or “fixed” for students’ expected acquisition alienates many students and needs to be problematized. We propose an alternative approach to changes in mathematics education and show how the alternative also applies to STEM education.


2020 ◽  
Author(s):  
Loi Booher ◽  
Louis S. Nadelson ◽  
Sandra G. Nadelson

Sign in / Sign up

Export Citation Format

Share Document