scholarly journals Reconstruction of monsoon evolution in southernmost Sumatra over the past 35 kyr and its response to northern hemisphere climate changes

Author(s):  
Shengfa Liu ◽  
Hui Zhang ◽  
Xuefa Shi ◽  
Min-Te Chen ◽  
Peng Cao ◽  
...  
2021 ◽  
Author(s):  
Denis-Didier Rousseau ◽  
Witold Bagniewski ◽  
Michael Ghil

Abstract. Abrupt climate changes constitute a relatively new field of research, which addresses variations occurring in a relatively short time interval of tens to a hundred years. Such time scales do not correspond to the tens or hundreds of thousands of years that the astronomical theory of climate addresses. The latter theory involves parameters that are external to the climate system and whose multi-periodic variations are reliably known and almost constant for a large extent of Earth history. Abrupt changes, conversely, appear to involve fast processes that are internal to the climate system; these processes varied considerably during the past 2.6 Myr, and yielded more irregular fluctuations. In this paper, we re-examine the main climate variations determined from the U1308 North Atlantic marine record, which yields a detailed calving history of the Northern Hemisphere ice sheets over the past 3.2 Myr. The magnitude and periodicity of the ice-rafted debris (IRD) events observed in the U1308 record allow one to determine the timing of several abrupt climate changes, the larger ones corresponding to the massive iceberg discharges labeled Heinrich events (HEs). In parallel, abrupt warmings, called Dansgaard-Oeschger (DO) events, have been identified in the Greenland records of the last glaciation cycle. Combining the HE and DO observations, we study a complex mechanism that may lead to the observed millennial-scale variability corresponding to the abrupt climate changes of last 0.9 Myr. This mechanism relies on amended Bond cycles, which group DO events and the associated Greenland stadials into a trend of increased cooling, with IRD events embedded into every stadial, the latest of these being an HE. These Bond cycles may have occurred during the last 0.9 Ma when Northern Hemisphere ice sheets reached their maximum extent and volume, thus becoming a major player in this time interval’s climate dynamics. Since the waxing and waning of ice sheets during the Quaternary period are orbitally paced, we conclude that the abrupt climate changes observed during the Mid and Upper Pleistocene are therewith indirectly linked to the astronomical theory of climate.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Masayoshi Ishii ◽  
Nobuhito Mori

Abstract A large-ensemble climate simulation database, which is known as the database for policy decision-making for future climate changes (d4PDF), was designed for climate change risk assessments. Since the completion of the first set of climate simulations in 2015, the database has been growing continuously. It contains the results of ensemble simulations conducted over a total of thousands years respectively for past and future climates using high-resolution global (60 km horizontal mesh) and regional (20 km mesh) atmospheric models. Several sets of future climate simulations are available, in which global mean surface air temperatures are forced to be higher by 4 K, 2 K, and 1.5 K relative to preindustrial levels. Nonwarming past climate simulations are incorporated in d4PDF along with the past climate simulations. The total data volume is approximately 2 petabytes. The atmospheric models satisfactorily simulate the past climate in terms of climatology, natural variations, and extreme events such as heavy precipitation and tropical cyclones. In addition, data users can obtain statistically significant changes in mean states or weather and climate extremes of interest between the past and future climates via a simple arithmetic computation without any statistical assumptions. The database is helpful in understanding future changes in climate states and in attributing past climate events to global warming. Impact assessment studies for climate changes have concurrently been performed in various research areas such as natural hazard, hydrology, civil engineering, agriculture, health, and insurance. The database has now become essential for promoting climate and risk assessment studies and for devising climate adaptation policies. Moreover, it has helped in establishing an interdisciplinary research community on global warming across Japan.


2021 ◽  
Vol 13 (9) ◽  
pp. 1843
Author(s):  
Xiaona Chen ◽  
Yaping Yang ◽  
Yingzhao Ma ◽  
Huan Li

Snow cover phenology has exhibited dramatic changes in the past decades. However, the distribution and attribution of the hemispheric scale snow cover phenology anomalies remain unclear. Using satellite-retrieved snow cover products, ground observations, and reanalysis climate variables, this study explored the distribution and attribution of snow onset date, snow end date, and snow duration days over the Northern Hemisphere from 2001 to 2020. The latitudinal and altitudinal distributions of the 20-year averaged snow onset date, snow end date, and snow duration days are well represented by satellite-retrieved snow cover phenology matrixes. The validation results by using 850 ground snow stations demonstrated that satellite-retrieved snow cover phenology matrixes capture the spatial variability of the snow onset date, snow end date, and snow duration days at the 95% significance level during the overlapping period of 2001–2017. Moreover, a delayed snow onset date and an earlier snow end date (1.12 days decade−1, p < 0.05) are detected over the Northern Hemisphere during 2001–2020 based on the satellite-retrieved snow cover phenology matrixes. In addition, the attribution analysis indicated that snow end date dominates snow cover phenology changes and that an increased melting season temperature is the key driving factor of snow end date anomalies over the NH during 2001–2020. These results are helpful in understanding recent snow cover change and can contribute to climate projection studies.


Science ◽  
2008 ◽  
Vol 322 (5899) ◽  
pp. 252-255 ◽  
Author(s):  
J. E. Tierney ◽  
J. M. Russell ◽  
Y. Huang ◽  
J. S. S. Damste ◽  
E. C. Hopmans ◽  
...  

2012 ◽  
Vol 56 (2) ◽  
pp. 321-329 ◽  
Author(s):  
QuanSheng Ge ◽  
JingYun Zheng ◽  
ZhiXin Hao ◽  
HaoLong Liu

2021 ◽  
Author(s):  
Kseniia Golubenko ◽  
Eugene Rozanov ◽  
Genady Kovaltsov ◽  
Ari-Pekka Leppänen ◽  
Ilya Usoskin

&lt;p&gt;We present the first results of modelling of the short-living cosmogenic isotope &lt;sup&gt;7&lt;/sup&gt;Be production, deposition, and transport using the chemistry-climate model SOCOLv&lt;sub&gt;3.0&lt;/sub&gt; aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme, &amp;#160;based on gas tracers with and without nudging to the known meteorological fields. Production of &lt;sup&gt;7&lt;/sup&gt;Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of &lt;sup&gt;7&lt;/sup&gt;Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope &lt;sup&gt;7&lt;/sup&gt;Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002&amp;#8211;2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past.&amp;#160;&lt;/p&gt;


Radiocarbon ◽  
2005 ◽  
Vol 47 (3) ◽  
pp. 425-432 ◽  
Author(s):  
Naohiko Ohkouchi ◽  
Timothy I Eglinton ◽  
Konrad A Hughen ◽  
Ellen Roosen ◽  
Lloyd D Keigwin

As a result of the growing use of multiple geochemical proxies to reconstruct ocean and climate changes in the past, there is an increasing need to establish temporal relationships between proxies derived from the same marine sediment record and ideally from the same core sections. Coupled proxy records of surface ocean properties, such as those based on lipid biomarkers (e.g. alkenone-derived sea surface temperature) and planktonic foraminiferal carbonate (oxygen isotopes), are a key example. Here, we assess whether 2 different solvent extraction procedures used for isolation of molecular biomarkers influence the radiocarbon contents of planktonic foraminiferal carbonate recovered from the corresponding residues of Bermuda Rise and Cariaco Basin sediments. Although minor Δ14C differences were observed between solvent-extracted and unextracted samples, no substantial or systematic offsets were evident. Overall, these data suggest that, in a practical sense, foraminiferal shells from a solvent-extracted residue can be reliably used for 14C dating to determine the age of sediment deposition and to examine age relationships with other sedimentary constituents (e.g. alkenones).


2014 ◽  
Vol 25 (2) ◽  
pp. 172 ◽  
Author(s):  
Mike Smith

This paper examines how the past of desert landscapes has been interpreted since European explorers and scientists first encountered them. It charts the research that created the conceptual space within which archaeologists and Quaternarists now work. Studies from the 1840s–1960s created the notion of a ‘Great Australian Arid Period'. The 1960s studies of Lake Mungo and the Willandra Lakes by Jim Bowler revealed the cyclical nature of palaeolakes, that changed with climate changes in the Pleistocene, and the complexity of desert pasts. SLEADS and other researchers in the 1980s used thermoluminescence techniques that showed further complexities in desert lands beyond the Willandra particularly through new studies in the Strzelecki and Simpson Dunefields, Lake Eyre, Lake Woods and Lake Gregory. Australian deserts are varied and have very different histories. Far from ‘timeless lands', they have carried detailed information about long-term climate changes on continental scales.


Sign in / Sign up

Export Citation Format

Share Document