scholarly journals Metagenome-assembled genomes infer potential microbial metabolism in alkaline sulphidic tailings

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wenjun Li ◽  
Xiaofang Li

Abstract Background Mine tailings are hostile environment. It has been well documented that several microbes can inhabit such environment, and metagenomic reconstruction has successfully pinpointed their activities and community structure in acidic tailings environments. We still know little about the microbial metabolic capacities of alkaline sulphidic environment where microbial processes are critically important for the revegetation. Microbial communities therein may not only provide soil functions, but also ameliorate the environment stresses for plants’ survival. Results In this study, we detected a considerable amount of viable bacterial and archaeal cells using fluorescent in situ hybridization in alkaline sulphidic tailings from Mt Isa, Queensland. By taking advantage of high-throughput sequencing and up-to-date metagenomic binning technology, we reconstructed the microbial community structure and potential coupled iron and nitrogen metabolism pathways in the tailings. Assembly of 10 metagenome-assembled genomes (MAGs), with 5 nearly complete, was achieved. From this, detailed insights into the community metabolic capabilities was derived. Dominant microbial species were seen to possess powerful resistance systems for osmotic, metal and oxidative stresses. Additionally, these community members had metabolic capabilities for sulphide oxidation, for causing increased salinity and metal release, and for leading to N depletion. Conclusions Here our results show that a considerable amount of microbial cells inhabit the mine tailings, who possess a variety of genes for stress response. Metabolic reconstruction infers that the microbial consortia may actively accelerate the sulphide weathering and N depletion therein.

2019 ◽  
Author(s):  
Lee Worden

AbstractHigh-throughput sequencing techniques such as metagenomic and metatranscriptomic technologies allow cataloging of functional characteristics of microbial community members as well as their taxonomic identity. Such studies have found that a community’s composition in terms of ecologically relevant functional traits or guilds can be conserved more strictly across varying settings than taxonomic composition is. I use a standard ecological resource-consumer model to examine the dynamics of traits relevant to resource consumption, and analyze determinants of functional composition. This model demonstrates that interaction with essential resources can regulate the community-wide abundance of ecologically relevant traits, keeping them at consistent levels despite large changes in the abundances of the species housing those traits in response to changes in the environment, and across variation between communities in species composition. Functional composition is shown to be able to track differences in environmental conditions faithfully across differences in community composition. Mathematical conditions on consumers’ vital rates and functional responses sufficient to produce conservation of functional community structure across taxonomic differences are presented.


mSystems ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Manuel Kleiner

ABSTRACT Metaproteomics is the large-scale identification and quantification of proteins from microbial communities and thus provides direct insight into the phenotypes of microorganisms on the molecular level. Initially, metaproteomics was mainly used to assess the “expressed” metabolism and physiology of microbial community members. However, recently developed metaproteomic tools allow quantification of per-species biomass to determine community structure, in situ carbon sources of community members, and the uptake of labeled substrates by community members. In this perspective, I provide a brief overview of the questions that we can currently address, as well as new metaproteomics-based approaches that we and others are developing to address even more questions in the study of microbial communities and plant and animal microbiota. I also highlight some areas and technologies where I anticipate developments and potentially major breakthroughs in the next 5 years and beyond.


2007 ◽  
Vol 177 (4S) ◽  
pp. 596-597
Author(s):  
Joseph P. Alukal ◽  
Bobby B. Najari ◽  
Wilson Chuang ◽  
Lata Murthy ◽  
Monica Lopez-Perdomo ◽  
...  

Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1033-1038 ◽  
Author(s):  
CM Price ◽  
EJ Kanfer ◽  
SM Colman ◽  
N Westwood ◽  
AJ Barrett ◽  
...  

Abstract Fluorescent in situ hybridization has become a useful technique by which chromosomal abnormalities may be shown in interphase cells. We present a dual-fluorescence method whereby a chromosomal and immunophenotypic marker can be visualized simultaneously in the same interphase cell. Two patients with the myeloproliferative disorder polycythemia vera and trisomy for chromosome 8 have been studied using this technique and selective involvement of the myeloid and erythrocyte lineages has been shown by the detection of the trisomy in immunophenotyped cells. Simultaneous analysis of genotype and immunophenotype in individual cells from patients with myeloproliferative disorders or leukemia may help identify the developmental and lineage status of cells in which molecular alterations have resulted in clonal advantage.


Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


Sign in / Sign up

Export Citation Format

Share Document