scholarly journals Fully-automated production of [68Ga]Ga-FAPI-46 for clinical application

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Sarah Spreckelmeyer ◽  
Matthias Balzer ◽  
Simon Poetzsch ◽  
Winfried Brenner

Abstract Background [68Ga]Ga-FAPI-46 is a promising radiopharmaceutical for in vivo detection of the fibroblast activation protein by positron emission tomography. Until now, the synthesis of [68Ga]Ga-FAPI-46 has been only performed manually. Our aim was to evaluate the automated synthesis of this radiopharmaceutical on two different commercially available synthesis modules in order to make the tracer readily available for clinical application. Results The synthesis of [68Ga]Ga-FAPI-46 with different amounts of precursor (10–50 μg) on the Modular Lab PharmTracer (MLPT) and Modular Lab eazy (ML eazy) from Eckert & Ziegler with a customized synthesis template and a customized single-use cassette yielded best results with 50 μg FAPI-46 for clinical multi-dose application. All relevant quality control parameters tested (e.g. sterility, stability and radiochemical purity) were in accordance with the European Pharmacopoeia. Conclusions [68Ga]Ga-FAPI-46 was successfully synthesized fully-automated on the synthesis modules Modular Lab PharmTracer and ML eazy and is, thus, available for multi-dose application in clinical settings.

2020 ◽  
Author(s):  
Christine Vala ◽  
Céline Mothes ◽  
Gabrielle Chicheri ◽  
Pauline Magadur ◽  
Gilles Viot ◽  
...  

Abstract Background:Fluorine labelled 8-((E)-4-fluoro-but-2-enyl)-3b-p-tolyl-8-aza-bicyclo[3.2.1]octane-2b-carboxylic acid methyl ester ([18F]LBT999) is a selective radioligand for in vivoneuroimaging and quantification of the dopamine transporter by Positron Emission Tomography (PET). [18F]LBT999 has been produced on a TRACERlabFXFN for the Phase I study but forPhase III and a potent industrial production transfer, production has been also implemented on AllinOne (AIO)system requiring single use cassette. Both productions methods are reported herein. Results:Automation of [18F]LBT999radiosynthesis on FXFN was carried out in 35% yield (decay-corrected) in 65 min (n=16), with a radiochemical purity higher than 99 %and a molar activity of 158GBq/µmol at the end of synthesis. The transfer on the AIO platform followed by optimizations allowed the production of [18F]LBT999 in 32.7% yield (decay-corrected) within 48 min (n=5), with a radiochemical purity better than 98% and a molar activity in average higher to 154 GBq/µmol at the end of synthesis. Quality controls of both methods met the specification for clinical application.Conclusion:Both modules allow efficient and reproducible radiosynthesis of [18F]LBT999 with good radiochemical yields and a reasonable synthesis time.The developments made on AIO as its ability to meet pharmaceutical criteria and to more easily comply with GMP requirements make this approach as the best for a potent industrial production of the [18F]LBT999 and a future wider use.


RSC Advances ◽  
2015 ◽  
Vol 5 (120) ◽  
pp. 99540-99546 ◽  
Author(s):  
Ana V. C. Simões ◽  
Sara M. A. Pinto ◽  
Mário J. F. Calvete ◽  
Célia M. F. Gomes ◽  
Nuno C. Ferreira ◽  
...  

Synthesis, labeling and initial biodistribution studies of a new [18F] radiolabeled meso-tetraphenylporphyrin (radiochemical purity >95%). Includes human bladder tumor cell uptake and biodistribution data.


2022 ◽  
Author(s):  
Tomoteru Yamasaki ◽  
Katsushi Kumata ◽  
Atsuto Hiraishi ◽  
Yiding Zhang ◽  
Hidekatsu Wakizaka ◽  
...  

Abstract Background: Receptor-interacting protein 1 kinase (RIPK1) is a key enzyme in the regulation of cellular necroptosis. Recently, cyclohexyl (5-(2-acetamidobenzo[d]thiazol-6-yl)-2-methylpyridin-3-yl)carbamate (PK68, 5) has been developed as a potent inhibitor of RIPK1. Herein, we radiosynthesized [11C]PK68 as a new positron emission tomography (PET) ligand for imaging RIPK1 and evaluated its potential in vivo.Results: We synthesized [11C]PK68 by reacting amine precursor 14 with [11C]acetyl chloride. At the end of synthesis, we obtained [11C]PK68 of 1200–1790 MBq (n = 10) with >99% radiochemical purity and a molar activity of 37–99 GBq/μmol starting from 18–33 GBq of [11C]CO2. The fully automated synthesis took 30 min from the end of irradiation. In a small-animal PET study, [11C]PK68 was rapidly distributed in the liver and kidneys of healthy mice after injection, and was subsequently cleared from their bodies via hepatobiliary excretion and the intestinal reuptake pathway. Although there was no obvious specific binding of RIPK1 in the PET study, [11C]PK68 demonstrated relatively high stability in vivo, and may be used as a lead compound for further candidate development.Conclusions: In the present study, we successfully radiosynthesized [11C]PK68 and evaluated its potential in vivo. We are planning to optimize the chemical structure of [11C]PK68 and conduct further PET studies on it using pathological models.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 764
Author(s):  
Daniel F. Earley ◽  
Amaury Guillou ◽  
Dion van der Born ◽  
Alex J. Poot ◽  
Jason P. Holland

89Zr-radiolabelled proteins functionalised with desferrioxamine B are a cornerstone of diagnostic positron emission tomography. In the clinical setting, 89Zr-labelled proteins are produced manually. Here, we explore the potential of using a microfluidic photochemical flow reactor to prepare 89Zr-radiolabelled proteins. The light-induced functionalisation and 89Zr-radiolabelling of human serum albumin ([89Zr]ZrDFO-PEG3-Et-azepin-HSA) was achieved by flow photochemistry with a decay-corrected radiochemical yield (RCY) of 31.2 ± 1.3% (n = 3) and radiochemical purity >90%. In comparison, a manual batch photoreactor synthesis produced the same radiotracer in a decay-corrected RCY of 59.6 ± 3.6% (n = 3) with an equivalent RCP > 90%. The results indicate that photoradiolabelling in flow is a feasible platform for the automated production of protein-based 89Zr-radiotracers, but further refinement of the apparatus and optimisation of the method are required before the flow process is competitive with manual reactions.


Author(s):  
Sean S. Tanzey ◽  
Xia Shao ◽  
Jenelle Stauff ◽  
Janna Arteaga ◽  
Phillip Sherman ◽  
...  

Positron emission tomography (PET) imaging of Colony Stimulating Factor 1 Receptor (CSF1R) is a new strategy for quantifying both neuroinflammation and inflammation in the periphery since CSF1R is expressed on microglia. AZ683 has high affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM) and >250-fold selectivity over 95 other kinases and, in this paper, we report the radiosynthesis of [11C]AZ683 and initial evaluation of its use in CSF1R PET. [11C]AZ683 was synthesized by 11C-methylation of the desmethyl precursor with [11C]MeOTf in 3.0% non-corrected activity yield (based upon [11C]MeOTf), >99% radiochemical purity and high specific activity. Preliminary PET imaging with [11C]AZ683 revealed no brain uptake in rodents and nonhuman primates suggesting that [11C]AZ683 is a poor candidate for imaging neuroinflammation, but that it could still be useful for peripheral imaging of inflammation.


2020 ◽  
Author(s):  
Anusha Rangarajan ◽  
Minjie Wu ◽  
Naomi Joseph ◽  
Helmet T. Karim ◽  
Charles Laymon ◽  
...  

AbstractAlzheimer’s disease (AD) is the most common cause of dementia and identifying early markers of this disease is important for prevention and treatment strategies. Amyloid - β protein deposition is one of the earliest detectable pathological changes in AD. But in-vivo detection of amyloid - β using positron emission tomography (PET) is hampered by high cost and limited geographical accessibility. These factors can become limiting when PET is used to screen large numbers of subjects into prevention trials when only a minority are expected to be amyloid- β - positive. Structural MRI is advantageous; as it is relatively inexpensive and more accessible. Thus it could be widely used in large studies, even when frequent or repetitive imaging is necessary. We used a machine learning, pattern recognition, approach using intensity-based features from individual and combination of MR modalities (T1 weighted, T2 weighted, T2 fluid attenuated inversion recovery [FLAIR], susceptibility weighted imaging) to predict voxel-level amyloid- β in the brain. The MR- amyloid β relation was learned within each subject and generalized across subjects using subject–specific features (demographic, clinical, and summary MR features). When compared to other modalities, combination of T1-weighted, T2-weighted FLAIR, and SWI performed best in predicting the amyloid- β status as positive or negative. T2- weighted performed the best in predicting change in amyloid- β over two timepoints. Overall, our results show feasibility of amyloid- β prediction by MRI.


2014 ◽  
Vol 20 (8) ◽  
pp. 2126-2135 ◽  
Author(s):  
Matthew R. Hight ◽  
Yiu-Yin Cheung ◽  
Michael L. Nickels ◽  
Eric S. Dawson ◽  
Ping Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document