scholarly journals Effects of insecticides and cultivars on panicle-feeding insect pest infestations and grain yield of sorghum (Sorghum bicolor (L.) Moench) in northern Ghana

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Jerry A. Nboyine ◽  
Kenneth Opare-Obuobi ◽  
Iddrisu Yahaya ◽  
Benjamin K. Badii ◽  
Francis Kusi ◽  
...  

Abstract Background Panicle-feeding insects are a challenge in sorghum (Sorghum bicolor (L.) Moench) cultivation but most farmers do not protect the crop. Here, the effects of pest management in different sorghum cultivars on grain yields and the financial returns after protecting the crop from panicle-feeding insects was studied. Results There were significant insecticide treatments × cultivars/genotypes interaction effects for Stenodiplosis sorghicola, Clavigralla tomentosicollis, Nezara viridula, Dysdercus fasciantus and Riptortus dentipes. Generally, pest infestations were higher in the untreated control compared to K-Optimal- or NSO-treated sorghum. Infestations were also higher in compact-headed cultivars (Dorado and Kapaala) compared to those with open heads (CSSOR 08-V01 and CSSOR 10-V07). Damage was approximately 1.7-fold higher in the untreated controls than in NSO or K-Optimal. Grain yields were about 14% higher in NSO or K-Optimal treated sorghum than in controls. Gross margins were between 16- and 35-fold higher in protected sorghum compared to the untreated ones. Conclusion These findings suggest that an effective integrated pest management strategy for sorghum farmers must comprise cultivars that do not have compact heads, and the use of about two sprays of NSO or a synthetic pyrethroid when high numbers of panicle-feeding insects are observed during the growing season. Judicious use of insecticides and the “right” cultivar will improve the profitability of sorghum farmers with gross marginal returns that are at least 15-fold higher than that obtained by farmers who adopt only good agronomic practices without insecticide sprays.

2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Shovon Chandra Sarkar ◽  
Endong Wang ◽  
Shengyong Wu ◽  
Zhongren Lei

Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. However, this additional consideration requires a more knowledge-intensive background to designing an effective trap cropping system. We have provided information based on different trap crops as companion plant, their functions and an updated list of trap cropping applications to attract insect pests and natural enemies that should be proven as helpful in future trap cropping endeavors.


1989 ◽  
Vol 3 (1) ◽  
pp. 72-75 ◽  
Author(s):  
Shelby J. Fleischer ◽  
Michael J. Gaylor ◽  
Ray Dickens ◽  
David L. Turner

Interstate rights-of-way may serve as weed host reservoirs for the tarnished plant bug, an insect pest of cotton. Management of these rights-of-way may have an impact upon cotton pest management. In a 3-yr study, time of mowing, frequency of mowing, and sulfometuron methyl applied against overwintering rosettes influenced the cover of annual fleabane and wild carrot, which harbor tarnished plant bugs.


2016 ◽  
pp. 135-168
Author(s):  
Tamoghna Saha ◽  
Nithya C. ◽  
Shyambabu S. ◽  
Kiran Kumari ◽  
S. N. Ray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document