scholarly journals Recover the abnormal positioning, velocity and timing services caused by BDS satellite orbital maneuvers

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Rui Tu ◽  
Rui Zhang ◽  
Pengfei Zhang ◽  
Junqiang Han ◽  
Lihong Fan ◽  
...  

AbstractThe BeiDou Navigation Satellite System (BDS) provides global Positioning, Velocity, And Timing (PVT) services that are widely used in various areas. The BDS satellites frequently need the orbit maneuvers due to various perturbations to keep satellites in their designed positions. During these maneuvers, PVT services may be abnormal if the data from a maneuvering satellite is used. In this paper we developed an approach to recover the abnormal PVT services. By using BDS observations from multiple tracking stations, the orbital errors of a maneuvering satellite can be in real time obtained and corrected, thereby avoiding any influence on the performance of PVT services. The tests show that the average precision of position, velocity and timing services are improved by 0.8 m, 0.1 mm/s and 0.16 ns, respectively, using the developed orbital maneuver recovery approach. In addition, the approach can also be used for the orbital maneuver detection and monitoring.

2018 ◽  
Vol 71 (4) ◽  
pp. 1011-1024 ◽  
Author(s):  
Rui Tu ◽  
Jinhai Liu ◽  
Rui Zhang ◽  
Pengfei Zhang ◽  
Xiaochun Lu

This paper proposes a model for combined Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) Real-Time Kinematic (RTK) positioning. The approach uses only one common reference ambiguity, for example, that of GPS L1, and estimates the pseudo-range and carrier phase system and frequency biases. The validations show that these biases are stable during a continuous reference ambiguity period and can be easily estimated, and the other estimated double-differenced ambiguities, such as those of GPS L2, BDS L1, and BDS L2, are not affected. Therefore, our approach solves the problems of a frequently changing reference satellite. In addition, because all the carrier phase observations use the same reference ambiguity, a relationship is established between the different systems and frequencies, and the strength of the combined model is thus increased.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4584 ◽  
Author(s):  
Rui Tu ◽  
Rui Zhang ◽  
Lihong Fan ◽  
Junqiang Han ◽  
Pengfei Zhang ◽  
...  

The orbital maneuvers of the global navigation satellite system (GNSSs) have a significant influence on the performance of the precise positioning, navigation, and timing (PNT) services. Because the Chinese BeiDou Navigation Satellite System (BDS) has three types of satellites in the geostationary orbit (GEO), inclined geosynchronous orbit (IGSO), and medium earth orbit (MEO) maneuvers occur more frequently. Thus, it is essential to determine an effective approach for the detection of orbital maneuvers. This study proposes a method for the detection of orbital maneuvers using epoch-differenced carrier phase observations and broadcast ephemeris data. When using the epoch-differenced velocity estimation as a basic data solution model, the time discrimination and satellite identification factors are defined and used for the real-time detection of the beginning and the pseudorandom noise code (PRN) of satellites. The datasets from four GNSS stations (WUH1, BJF1, POHN, CUT0) from the year 2016 were collected and analyzed. The validations showed that the beginning, the PRN of the orbital maneuver of the satellite can be precisely detected in real time for all GEO, IGSO, and MEO satellites, and the detected results also showed good consistency, with the beginning time at a difference of 1–2 min across different stations. The proposed approach was observed to be more sensitive, and the detected beginning time was about 30 min earlier than the single point positioning approach when the high-precision carrier phase observation was used. Thus, orbital maneuvering can be accurately detected by the proposed method. It not only improves the utilization of the collected data but also improves the performance of PNT services.


Sign in / Sign up

Export Citation Format

Share Document