An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

2018 ◽  
Vol 29 (7) ◽  
pp. 075003
Author(s):  
Rui Tu ◽  
Rui Zhang ◽  
Pengfei Zhang ◽  
Jinhai Liu ◽  
Xiaochun Lu
2014 ◽  
Vol 67 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Aigong Xu ◽  
Zongqiu Xu ◽  
Xinchao Xu ◽  
Huizhong Zhu ◽  
Xin Sui ◽  
...  

On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.


2018 ◽  
Vol 71 (4) ◽  
pp. 769-787 ◽  
Author(s):  
Ahmed El-Mowafy

Real-time Precise Point Positioning (PPP) relies on the use of accurate satellite orbit and clock corrections. If these corrections contain large errors or faults, either from the system or by meaconing, they will adversely affect positioning. Therefore, such faults have to be detected and excluded. In traditional PPP, measurements that have faulty corrections are typically excluded as they are merged together. In this contribution, a new PPP model that encompasses the orbit and clock corrections as quasi-observations is presented such that they undergo the fault detection and exclusion process separate from the observations. This enables the use of measurements that have faulty corrections along with predicted values of these corrections in place of the excluded ones. Moreover, the proposed approach allows for inclusion of the complete stochastic information of the corrections. To facilitate modelling of the orbit and clock corrections as quasi-observations, International Global Navigation Satellite System Service (IGS) real-time corrections were characterised over a six-month period. The proposed method is validated and its benefits are demonstrated at two sites using three days of data.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


2020 ◽  
Vol 12 (14) ◽  
pp. 2185 ◽  
Author(s):  
Wen Zhao ◽  
Hua Chen ◽  
Yang Gao ◽  
Weiping Jiang ◽  
Xuexi Liu

The BeiDou navigation satellite system (BDS) currently has 41 satellites in orbits and will reach its full constellation following the launch of the last BDS satellite in June 2020 to provide navigation, positioning, and timing (PNT) services for global users. In this contribution, we investigate the characteristics of inter-system bias (ISB) between BDS-2 and BDS-3 and verify whether an additional ISB parameter should be introduced for the BDS-2 and BDS-3 precise point positioning (PPP). The results reveal that because of different clock references applied for BDS-2 and BDS-3 in the International GNSS Service (IGS) precise satellites clock products and the inconsistent code hardware delays of BDS-2 and BDS-3 for some receiver types, an ISB parameter needs to be introduced for BDS-2 and BDS-3 PPP. Further, the results show that the ISB can be regarded as a constant within a day, the value of which is closely related to the receiver type. The ISB values of the stations with the same receiver type are similar to each other, but a great difference may be presented for different receiver types, up to several meters. In addition, the impact of ISB on PPP has also been studied, which demonstrates that the performance of kinematic PPP could be improved when ISB is introduced.


Sensors ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 927-943 ◽  
Author(s):  
Min Li ◽  
Lizhong Qu ◽  
Qile Zhao ◽  
Jing Guo ◽  
Xing Su ◽  
...  

2019 ◽  
Vol 94 ◽  
pp. 03008 ◽  
Author(s):  
Gimin Kim ◽  
Hyungjik Oh ◽  
Chandeok Park ◽  
Seungmo Seo

This study proposes real-time orbit/clock determination of Korean Navigation Satellite System (KNSS), which employs the kinematic precise point positioning (PPP) solutions of multiple Global Navigation Satellite System (multi-GNSS) to compensate for receiver clock offset. Global visibility of KNSS satellites in terms of geometric coverage is first analyzed for the purpose of selecting optimal locations of KNSS monitoring stations among International GNSS Service (IGS) and Multi-GNSS Experiment (MGEX) network. While the receiver clock offset is obtained from multi-GNSS PPP clock solutions of real observation data, KNSS measurements are simulated from the dynamically propagated KNSS reference orbit and the receiver clock offset. The offset and drift of satellite clock are also generated based on two-state clock model considering atomic clock noise. Real-time orbit determination results are compared with an artificially generated true or bit, wihch show 0.4m and 0.5m of 3-dimensional root-mean-square (RMS) position errors for geostationary (GEO) and ellitically-inclined-geosynchronous-orbit (EIGSO) satellites, respectively. The overall results show that the real-time precise orbit determination of KNSS should be achievable in meter level by installing KNSS-compatible multi-GNSS receivers on the IGS and/or MGEX network. The overall process can be also used to verify integrity of KNSS monitoring stations.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Rui Tu ◽  
Rui Zhang ◽  
Pengfei Zhang ◽  
Junqiang Han ◽  
Lihong Fan ◽  
...  

AbstractThe BeiDou Navigation Satellite System (BDS) provides global Positioning, Velocity, And Timing (PVT) services that are widely used in various areas. The BDS satellites frequently need the orbit maneuvers due to various perturbations to keep satellites in their designed positions. During these maneuvers, PVT services may be abnormal if the data from a maneuvering satellite is used. In this paper we developed an approach to recover the abnormal PVT services. By using BDS observations from multiple tracking stations, the orbital errors of a maneuvering satellite can be in real time obtained and corrected, thereby avoiding any influence on the performance of PVT services. The tests show that the average precision of position, velocity and timing services are improved by 0.8 m, 0.1 mm/s and 0.16 ns, respectively, using the developed orbital maneuver recovery approach. In addition, the approach can also be used for the orbital maneuver detection and monitoring.


Sign in / Sign up

Export Citation Format

Share Document