scholarly journals MRI evaluation of hepatic and cardiac iron burden in pediatric thalassemia major patients: spectrum of findings by T2*

Author(s):  
Samar M. Shehata ◽  
Mohamed I. Amin ◽  
El Sayed H. Zidan

Abstract Background Iron deposition distorts the local magnetic field exerting T2* signal decay. Biopsy, serum ferritin, echocardiography are not reliable to adjust iron chelation therapy. Quantified MRI signal decay can replace biopsy to diagnose iron burden, guide treatment, and follow up. The objective of this study is to evaluate the role of T2* in quantification of the liver and heart iron burden in thalassemia major patients. This cross-sectional study included 44 thalassemia patients who were referred to MRI unit, underwent T2* MRI. Results Twenty-one male (47.7%) and 23 female (52.3%) were included (age range 6–15 years, mean age 10.9 ± 2.9 years). Patients with excess hepatic iron show the following: 11/40 (27.5%) mild, (13/40) 32.5% moderate, and (14/40) 35% severe liver iron overload. High statistical significance regarding association between LIC and liver T2* (p = 0.000) encountered. Cardiac T2* values showed no relationship with age (p = 0.6). Conclusion T2* is a good method to quantify, monitor hepatic and myocardial iron burden, guiding chelation therapy and prevent iron-induced cardiac complications.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4270-4270
Author(s):  
Antonios Kattamis ◽  
Konstantinos Stokidis ◽  
Theoni Petropoulou ◽  
Dimitra Kyriacopoulou ◽  
Polyxeni Delaporta ◽  
...  

Abstract Abstract 4270 Background: Recent advances in the treatment of iron overload in patients with transfusion- dependent thalassemia have dramatically changed iron related morbidity and mortality. Intensive chelation therapy by using combination therapy or monotherapy at high doses had led to total clearing of the iron in many patients. The best approach for chelation treatment in patients with low levels of iron overload is debatable. Patients and Methods This study included all the patients with thalassemia major with minimal liver iron overload, followed in our unit. More precisely, to be eligible for this observational study, the patients needed to have liver iron concentration (LIC) <1.5 mg Fe/gram dry weight tissue, defined by MRI, and to have at least a subsequent MRI evaluation after this time. The mean observation time, which was the time between the two MRIs, was 16.9±5.2 months. Results Fourty five patients (22 females, 30 non-splemectomized, 21 HCV seropositive, mean age: 31±5.6 years) have reached minimal levels of iron overload in any time point after 2004. Thirty one of them have been treated with combined therapy of desferrioxamine (DFO) and deferiprone (DFP) and 5, 6 and 3 with monotherapy of deferasirox (DFX), DFP and DFO, respectively. After reaching these levels, 42% of the patients changed therapy, with the most frequent change being from combined therapy to monotherapy (15 patients). Baseline ferritin levels at the time of the first MRI range from 43 to 4336 ng/ml (median 230 ng/ml) and they were not affected by spleen, gender or HCV status. Baseline LIC (mean 1.2 ± 1.7 mgFe/g.d.w.) correlated well with ferritin levels (Spearman's rho = 0.47, p<0.005), as did ferritin changes to LIC changes (Spearman's rho = 0.67, p<0.005). The results on the follow up evaluation, stratified according to the actual treatment, are shown in the table Deferiprone was less efficacious in controlling both LIC and ferritin levels compared to combination therapy (p=0.016 and 0.031, respectively). Fifteen out of 17 patients treated with DFP showed an increase in LIC, despite using the recommended dose. Six out of 9 patients treated with DFX, most at a low dose, showed an increase in LIC. There were no differences in changes in the cardiac parameters (LVEF, cardiac T2*) in between treatment groups. The efficiency of DFP and DFX, which represents the ratio of iron excreted to the theoretical maximum of iron that could be bound by the chelators, was calculated at 1.8±0.9 % and 15.2 ± 3.6 %, respectively. Conclusions Current iron chelation therapy regimens are able to render iron load-free many patients with thalassemia major. As iron accumulation from transfusions continues, a fine balance needs to be found in which neither worsening of iron overload nor toxicity from excessive dose of iron chelators will occur. This study showed that at low levels of iron overload both combination therapy and DFX can control iron accumulation, whether monotherapy with DFP may be insufficient to achieve iron balance in many patients. The dose of the chelators needs to be adjusted according to the needs and the clinical course of the patients, which can be predicted by the trend of the ferritin levels. Furthermore, it should be kept in mind that at low levels of iron overload, the iron chelators' efficiency may be lower than previously described. Disclosures: Kattamis: NOVARTIS ONCOLOGY: Honoraria, Research Funding, Speakers Bureau; APOPHARMA: Honoraria. Ladis:NOVARTIS ONCOLOGY: Honoraria, Research Funding; APOPHARMA: Honoraria, Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Melody J. Cunningham ◽  
Eric A. Macklin ◽  
Ellis J. Neufeld ◽  
Alan R. Cohen ◽  

Abstract Treatment of patients with β-thalassemia major has improved dramatically during the past 40 years; however, the current clinical status of these patients remains poorly characterized. We performed a cross-sectional study of 342 patients in the Registry of the National Institutes of Health-sponsored Thalassemia Clinical Research Network. Evidence of hepatitis C exposure was present in 35% of tested patients, was associated with age, and had a rate of spontaneous viral clearance of 33%. Ferritin levels ranged from 147 to 11 010 ng/mL (median, 1696 ng/mL). Median hepatic iron content was 7.8 mg/g dry weight and 23% of patients had values of 15 mg/g dry weight or higher. No patients 15 years or younger and 5% of patients aged 16 to 24 years had heart disease requiring medication. Ten percent had cirrhosis on biopsy. Endocrinologic complications were common among adults. Seventy-four (22%) patients had recent implantable central venous access devices (CVADs) placed. Among 80 episodes of bacteremia in 38 patients, 90% were attributable to the CVAD. Among 330 patients who had received deferoxamine chelation therapy, 224 (68%) reported no complications. We conclude that hepatitis C, iron-related organ dysfunction, and complications of iron chelation therapy are strongly age-dependent in North American patients with β-thalassemia.


2018 ◽  
Vol 10 ◽  
pp. e2018062 ◽  
Author(s):  
Vincenzo De Sanctis

Abstract. Introduction: Chronic blood transfusion is the mainstay of care for individuals with β-thalassemia major (BTM). However, it causes iron-overload that requires monitoring and management by long-term iron chelation therapy in order to prevent endocrinopathies and cardiomyopathies, that can be fatal. Hepatic R2 MRI method (FerriScan®) has been validated as the gold standard for evaluation and monitoring liver iron concentration (LIC) that reflects the total body iron-overload. Although adequate oral iron chelation therapy (OIC) is promising for the treatment of transfusional iron-overload, some patients are less compliant with it and others suffer from long-term effects of iron overload. Objective: The aim of our study was to evaluate the prevalence of endocrinopathies and liver dysfunction, in relation to LIC and serum ferritin level, in a selected group of adolescents and young adult BTM patients with severe hepatic iron overload (LIC from 15 to 43 mg Fe/g dry weight). Patients and Methods: Twenty-four selected BTM patients with severe LIC, due to transfusion-related iron-overload, followed at the Hematology Section, National Center for Cancer Care and Research, Hamad Medical Corporation of Doha (Qatar), from April 2015 to July 2017, were retrospectively evaluated. The prevalence of short stature, hypogonadism, hypothyroidism, hypoparathyroidism, impaired fasting glucose (IFG), diabetes, and adrenal insufficiency was defined and assessed according to the International Network of Clinicians for Endocrinopathies in Thalassemia (ICET) and American Diabetes Association criteria. Results: Patients have been transfused over the past 19.75 ± 8.05 years (ranging from 7 to 33 years). The most common transfusion frequency was every 3 weeks (70.8%).  At the time of LIC measurements, the mean age of patients was 21.75 ± 8.05 years, mean LIC was 32.05 ± 10.53 mg Fe/g dry weight (range: 15 to 43 mg Fe/g dry weight). Their mean serum ferritin level was 4,488.6 ± 2,779 µg/L. The overall prevalence of growth failure was 26.1% (6/23), IFG was 16.7% (4/24), sub-clinical hypothyroidism was 14.3% (3/21), hypogonadism was 14.3% (2/14), diabetes mellitus was 12.5% (3/24), and biochemical adrenal insufficiency was 6.7% (1/15). The prevalence of hepatitis C positivity was 20.8% (5/24). No case of clinical hypothyroidism, adrenal insufficiency or hypoparathyroidism was detected in this cohort of patients. The prevalence of IFG impaired fasting glucose was significantly higher in BTM patients with very high LIC (>30 mg Fe/g dry liver) versus those with lower LIC (p = 0.044). LIC was correlated significantly with serum ferritin levels (r = 0.512; p = 0.011), lactate dehydrogenase (r = 0.744; p = 0.022) and total bilirubin (r = 0.432; p = 0.035). Conclusions: A significant number of BTM patients, with high LIC and endocrine disorders, still exist despite the recent developments of new oral iron chelating agents. Therefore, physicians’ strategies shall optimize early identification of those patients in order to optimise their chelation therapy and to avoid iron-induced organ damage. We believe that further studies are needed to evaluate if serial measurements of quantitative LIC may predict the risk for endocrine complications. Until these data are available, we recommend a close monitoring of endocrine and other complications, according to the international guidelines.  


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5602-5602
Author(s):  
Adisak Tantiworawit ◽  
Suebsakul Tapanya ◽  
Arintaya Phrommitikul ◽  
Lalita Norasetthada ◽  
Chatree Chai-adisaksopha ◽  
...  

Abstract Background Cardiac complications are the most common cause of death in thalassemia, accounting for up to 71% in the past. Iron chelation therapy is given to patients with iron overload to prevent these complications. The cost effectiveness of iron chelation therapy was arguable. This study aims to evaluate the prevalence of cardiac complication and the correlation between risk factors in iron chelation therapy era. Method This is a cross sectional study from June 2011- May 2012. All thalassemia aged > 15 years old were enrolled. Clinical data and hemoglobin typing were reviewed. Echocardiography and CMR T2*, a technique represent cardiac iron deposition used to evaluate cardiac function, were used to evaluate cardiac complications. Results Ninety one patients were enrolled, 63.7% were females, median age of 31 years (16-75). There was 49.5 % homozygous β thalassemia, 31.9% β thalassemia/Hb E disease, 18.7% Hb H disease. Half of patients were transfusion dependent and 63.7% underwent splenectomy. Eighty four percent of patients received iron chelation therapy but few of them got their preferable choice in adequate dosage. Patients with serum ferritin levels more than 1,000 ng/ml. received deferoxamine, deferiprone or deferasirox. Even with the iron chelation therapy, mean serum ferritin level was still high at 3,820 ng/ml for the whole group. CMR T2* was more sensitive in detecting cardiac function. The CMR T2* showed shorter signal (≤ 20 msec) in 11.1%. Only 8.2% had impaired ejection fraction <55% by echocardiography. The CMR T2*  ≤ 20 msec was significant correlated with higher maximum ferritin 5,739.14 ng/ml compared to 3,614 ng/ml (p=0.001). Pulmonary hypertension was found 7 patients (12.7%) and 71.42% had underwent splenectomy. Conclusion From our study, the CMR T2* is the sensitive method for detecting cardiomyopathy and highly correlated with serum ferritin levels. Splenectomy remains the major risk factor for pulmonary hypertension. The incidence of cardiac complications has decreased with iron chelation therapy for maintaining acceptable serum ferritin levels but the problem with cardiomyopathy and pulmonary hypertension still exist. Early detection, more sensitive implementation and aggressive iron chelation therapy are necessary to prevent these complications. The majority of the patients in Thailand which are under universal health-care coverage scheme could not get access to more effective and expensive iron chelator. Regular and adequate chelation plays a major role in the prevention of cardiac complications and the achievement of better quality of life. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 51 (2) ◽  
pp. 66
Author(s):  
Cynthia Rindang ◽  
Jose R. L. Batubara ◽  
Pustika Amalia ◽  
Hindra Satari

Background Severe iron overload due to recurrent transfusions for chronic anemia and inadequate iron chelation therapy in thalassemia major patients result in various complications, including hypothyroidism. Currently, there has been no data on the prevalence of hypothyroidism in thalassemia major patients at the Thalassemia Centers, Department of Child Health, CiptoMangunkusumo Hospital (DCH CMH).Objective To study the prevalence of primary hypothyroidism in thalassemia major patients in the Thalassemia Center, DCH MCH.Methods We performed a cross-sectional, descriptive study. All thalassemia major subjects aged O􀁬18 years with severe iron overload underwent thyroid functionexamination. Primary hypothyroidism was defined as either normal (compensated) or decreased (decompensated) free T4 (FT4) levels, along with elevated sensitive thyroid􀁬stimulatinghonnone (TSH)levels. Results 179 subjects enrolled this study Mth male: female ratio of 1: 1.6. The prevalence of primary hypothyroidism in thalassemia majorpatients Mth severe iron overloadws26.8% (48/179). Of those 48,45 had compensated hypothyroidism and 3 had decompensated hypothyroidism, 25.1% and 1.7% of the total subjects, respectively. Compensated hypothyroidism was observed in 17 subjects aged ≤1O years and in 28 subjects aged> 10 years. All 3 decompensated hypothyroidism cases were> 10 years of age. No relationship was found between the occurrence of primary hypothyroidism and mean pre-tr811sfusion Hb levels (P=0.481, OR 1.30; 95% CI 0.63 to 2.68), elevated serum ferritin levels (P=0.74, OR 0.89; 95% CI 0.46 to 1.75), and compliance to iron chelation therapy (P=0.570, OR 0.76; 95% CI 035 to 1.65). Based on multivariate analysis, only age of <10 year-old (P=O.029, OR 0.469; 95% CI 0.23 to 0.93) was significantly associated Mth primary hypJthyroidism. Further analysis using receiver operator curve (ROC) technique found that age of 8.5 year-old was the cutoff value to predict the risk of hypothyroidism. Conclusion The prevalence of primary hypothyroidism in our study is high. The occurrence of hypothyroidism is associated with age.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 443-450 ◽  
Author(s):  
John C. Wood

Abstract The use of magnetic resonance imaging (MRI) to estimate tissue iron was conceived in the 1980s, but has only become a practical reality in the last decade. The technique is most often used to estimate hepatic and cardiac iron in patients with transfusional siderosis and has largely replaced liver biopsy for liver iron quantification. However, the ability of MRI to quantify extrahepatic iron has had a greater impact on patient care and on our understanding of iron overload pathophysiology. Iron cardiomyopathy used to be the leading cause of death in thalassemia major, but is now relatively rare in centers with regular MRI screening of cardiac iron, through earlier recognition of cardiac iron loading. Longitudinal MRI studies have demonstrated differential kinetics of uptake and clearance among the difference organs of the body. Although elevated serum ferritin and liver iron concentration (LIC) increase the risk of cardiac and endocrine toxicities, some patients unequivocally develop extrahepatic iron deposition and toxicity despite having low total body iron stores. These observations, coupled with the advent of increasing options for iron chelation therapy, are allowing clinicians to more appropriately tailor chelation therapy to individual patient needs, producing greater efficacy with fewer toxicities. Future frontiers in MRI monitoring include improved prevention of endocrine toxicities, particularly hypogonadotropic hypogonadism and diabetes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Waseem F. Al Tameemi ◽  
Zainab M. J. Altawry

Chronic transfusions program in β-thalassemia patients will inevitably lead to iron overload with a significant morbidity and mortality. Glomerular filtration rate (GFR) is progressively declined in relation to iron overload as well as chronic anemia. Objective is to define levels of Cystatin C in transfusion dependent β-thalassemia major patients as a sensitive marker for detection of earlier glomerular dysfunction in addition to understand the effect of iron overload, chelating therapy and hepatitis infection. A cross sectional study conducted at Al-Basrah Hemoglobinopathy Centre for the period from September 2017 to January 2018 to enroll 75 β-thalassemia major patients. Data collected included duration of the disease, total transfusion requirement, details of chelation therapy and its therapeutic index. In addition to blood urea, serum creatinine and Cystatin C with estimated GFR (eGFR). The mean Cystatin C was 1.075 mg/L where 66.6% of patients had abnormal renal function which is higher proportion than those with renal (42.6%) detected according to serum creatinine level Cystatin C was significantly higher in patients who received desferrioxamine as compared to those received deferasirox (P=0.007), in accordance with GFR which is significantly higher in patients receiving the latter chelation therapy (P=0.009). A significant inverse relationship between Cystatin C, and GFR, while positive relationship between ferritin and Cystatin C (P=0.0001, 0.001 respectively). Cyctatin C is better for detection and monitoring of glomerular dysfunction in B thalassemia major patient which is already not uncommon complications for the disease and iron chelation therapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3880-3880
Author(s):  
Maria Domenica Cappellini ◽  
Norbert Gattermann ◽  
Vip Viprakasit ◽  
Jong Wook Lee ◽  
John B Porter ◽  
...  

Abstract Background: The prospective, 1-yr multicenter EPIC trial evaluated the efficacy and safety of once-daily oral deferasirox (Exjade®) in more than 1700 patients (pts) with transfusion-dependent anemias. Data were collected from each patient at enrollment, providing an insight into transfusion history, body iron burden, and the nature and success of previous chelation therapy in a large group of pts with iron overload previously treated with chelation therapy. Methods: Enrolled pts were aged ≥2 yrs, had transfusion-dependent anemia and serum ferritin (SF) levels of ≥1000 ng/mL, or <1000 ng/mL with a history of multiple transfusions (>20 transfusions or >100 mL/kg of RBCs) and MRI-assessed liver iron concentration (LIC) >2 mg Fe/g dry weight (dw). Baseline assessments included transfusion history, previous chelation therapy, SF levels and LIC (if carried out) in the previous yr. Results: 1744 pts (901 M, 843 F) were enrolled. Underlying anemias were: thalassemia major (TM; n=937), thalassemia intermedia (TI; n=84), myelodysplastic syndromes (MDS; n=341), aplastic anemia (AA; n=116), sickle cell disease (SCD; n=80), rare anemias (red cell aplasia and anemias mostly hemolytic in nature; n=43), Diamond-Blackfan anemia (DBA; n=14), and various other conditions associated with anemias requiring transfusion (n=129). Baseline characteristics for key underlying anemias are presented in Table 1. Median SF levels were >2500 ng/mL and mean LIC in the previous yr was >7 mg Fe/g dw in all groups (except DBA for SF levels). MDS pts had received the most transfusions in the previous yr, although they had also spent a smaller proportion of their lifetime, and less total time, receiving transfusions than any other cohort. Together with AA pts, the MDS cohort also contained the highest proportion of pts who were chelation-naïve (68% and 48%). SCD pts were the least-transfused group in terms of amount of blood given, but had been receiving transfusions for more than 13 yrs. As expected, TM pts had spent the greatest proportion of their lifetime on transfusions and received the greatest volume of blood per kg in the previous yr. The group labeled by investigators as TI were relatively heavily transfused for this patient population. Table 1. Baseline characteristics for key underlying anemias All (n=1744) TM (n=937) TI (n=84) MDS (n=341) AA (n=116) SCD (n=80) Rare (n=43) DBA (n=14) *Mean ± SD; **Median Age, yrs* 30.6±23.3 18.4±10.8 19.2±14.4 67.9±11.4 33.3±17.1 23.9±13.2 39.5±22.7 17.3±13.2 Transfusions in last yr* 17.8±12.5 17.5±8.8 13.5±7.1 24.3±17.7 12.5±13.0 10.7±8.2 21.0±18.7 19.0±18.7 Total transfused in last yr, mL/kg* 159±136 190±139 155±87 116±123 116±179 84±57 153±142 185±148 Total yrs on transfusions* 12.3±10.4 16.8±10.4 10.2±7.8 3.6±4.6 6.1±5.7 13.0±9.6 10.9±11.8 13.3±10.0 % of lifetime on transfusions* 62.9±39.4 89.8±15.2 61.2±28.8 5.7±8.4 27.1±29.3 59.5±30.1 44.3±41.5 87.5±23.2 LIC in last yr, mg Fe/g dw* 10.7±9.0 9.5±7.8 9.7±5.5 14.4±8.5 12.0±4.3 11.8±8.4 – 8.8±4.2 SF, ng/mL** 3135 3157 3493 2730 3254 3163 3161 2289 Prior chelation, % DFO 58.6 66.7 78.6 40.2 26.7 62.5 55.8 71.4 Deferiprone 1.6 1.3 – 4.1 – 1.3 2.3 – DFO/deferiprone 16.7 25.0 4.8 7.0 5.2 12.5 11.6 14.3 Other 0.3 0.4 – 0.3 – – – – None 23.0 7.0 16.7 48.4 68.1 23.8 30.2 14.3 Conclusions: Data from this study population show that, although most pts with thalassemia, SCD, DBA and rare anemias had received previous chelation therapy, LIC and SF levels were above levels associated with significant negative outcomes (>7 mg Fe/g dw and >2500 ng/mL, respectively), which suggests that previous chelation practices were sub-optimal. Many pts with MDS and AA were chelation-naïve despite being heavily iron overloaded, highlighting that the risks of iron overload are still underestimated. These data highlight the need to carefully monitor iron levels in pts at risk of iron overload and initiate chelation therapy to avoid serious clinical sequelae.


Blood ◽  
2008 ◽  
Vol 111 (2) ◽  
pp. 583-587 ◽  
Author(s):  
Alan R. Cohen ◽  
Ekkehard Glimm ◽  
John B. Porter

The success of chelation therapy in controlling iron overload in patients with thalassemia major is highly variable and may partly depend on the rate of transfusional iron loading. Using data from the 1-year phase III study of deferasirox, including volumes of transfused red blood cells and changes in liver iron concentration (LIC) in 541 patients, the effect of iron loading on achieving neutral or negative iron balance was assessed in patients receiving different doses of deferasirox and the comparator deferoxamine. After dose adjustment, reductions in LIC after 1 year of deferasirox or deferoxamine therapy correlated with transfusional iron intake. At a deferasirox dose of 20 mg/kg per day, neutral or negative iron balance was achieved in 46% and 75% of patients with the highest and lowest transfusional iron intake, respectively; 30 mg/kg per day produced successful control of iron stores in 96% of patients with a low rate of transfusional iron intake. Splenectomized patients had lower transfusional iron intake and greater reductions in iron stores than patients with intact spleens. Transfusional iron intake should be monitored on an ongoing basis in thalassemia major patients, and the rate of transfusional iron loading should be considered when choosing the appropriate dose of an iron-chelating agent. This study is registered at http://clinicaltrials.gov as NCT00061750.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4632-4639 ◽  
Author(s):  
Peter D. Jensen ◽  
Finn T. Jensen ◽  
Thorkil Christensen ◽  
Hans Eiskjær ◽  
Ulrik Baandrup ◽  
...  

Abstract Evaluation of myocardial iron during iron chelation therapy is not feasible by repeated endomyocardial biopsies owing to the heterogeneity of iron distribution and the risk of complications. Recently, we described a noninvasive method based on magnetic resonance imaging. Here, the method was used for repeated estimation of the myocardial iron content during iron chelation with deferrioxamine in 14 adult nonthalassemic patients with transfusional iron overload. We investigated the repeatability of the method and the relationship between the myocardial iron estimates and iron status. The repeatability coefficient (2sD) was 2.8 μmol/g in the controls (day-to-day) and 4.0 μmol/g in the patients (within-day). Myocardial iron estimates were elevated in 10 of all 14 patients at first examination, but normalized in 6 patients after 6 to 18 months of treatment. If liver iron declined below 350 μmol/g all but one of the myocardial iron estimates were normal or nearly normal. At start (R2 = 0.69, P = .0014) and still after 6 months of iron chelation (R2 = 0.76, P = .001), the estimates were significantly and more closely related to the urinary iron excretion than to liver iron or serum ferritin levels. In conclusion, our preliminary data, which may only pertain to patients with acquired anemias, suggest the existence of a critical liver iron concentration, above which elevated myocardial iron is present, but its extent seems related to the size of the chelatable iron pool, as reflected by the urinary iron excretion. This further supports the concept of the labile iron pool as the compartment directly involved in transfusional iron toxicity.


Sign in / Sign up

Export Citation Format

Share Document