scholarly journals Earlier detection of glomerular dysfunction in β-thalassemia major patients

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Waseem F. Al Tameemi ◽  
Zainab M. J. Altawry

Chronic transfusions program in β-thalassemia patients will inevitably lead to iron overload with a significant morbidity and mortality. Glomerular filtration rate (GFR) is progressively declined in relation to iron overload as well as chronic anemia. Objective is to define levels of Cystatin C in transfusion dependent β-thalassemia major patients as a sensitive marker for detection of earlier glomerular dysfunction in addition to understand the effect of iron overload, chelating therapy and hepatitis infection. A cross sectional study conducted at Al-Basrah Hemoglobinopathy Centre for the period from September 2017 to January 2018 to enroll 75 β-thalassemia major patients. Data collected included duration of the disease, total transfusion requirement, details of chelation therapy and its therapeutic index. In addition to blood urea, serum creatinine and Cystatin C with estimated GFR (eGFR). The mean Cystatin C was 1.075 mg/L where 66.6% of patients had abnormal renal function which is higher proportion than those with renal (42.6%) detected according to serum creatinine level Cystatin C was significantly higher in patients who received desferrioxamine as compared to those received deferasirox (P=0.007), in accordance with GFR which is significantly higher in patients receiving the latter chelation therapy (P=0.009). A significant inverse relationship between Cystatin C, and GFR, while positive relationship between ferritin and Cystatin C (P=0.0001, 0.001 respectively). Cyctatin C is better for detection and monitoring of glomerular dysfunction in B thalassemia major patient which is already not uncommon complications for the disease and iron chelation therapy.

2011 ◽  
Vol 51 (2) ◽  
pp. 66
Author(s):  
Cynthia Rindang ◽  
Jose R. L. Batubara ◽  
Pustika Amalia ◽  
Hindra Satari

Background Severe iron overload due to recurrent transfusions for chronic anemia and inadequate iron chelation therapy in thalassemia major patients result in various complications, including hypothyroidism. Currently, there has been no data on the prevalence of hypothyroidism in thalassemia major patients at the Thalassemia Centers, Department of Child Health, CiptoMangunkusumo Hospital (DCH CMH).Objective To study the prevalence of primary hypothyroidism in thalassemia major patients in the Thalassemia Center, DCH MCH.Methods We performed a cross-sectional, descriptive study. All thalassemia major subjects aged O􀁬18 years with severe iron overload underwent thyroid functionexamination. Primary hypothyroidism was defined as either normal (compensated) or decreased (decompensated) free T4 (FT4) levels, along with elevated sensitive thyroid􀁬stimulatinghonnone (TSH)levels. Results 179 subjects enrolled this study Mth male: female ratio of 1: 1.6. The prevalence of primary hypothyroidism in thalassemia majorpatients Mth severe iron overloadws26.8% (48/179). Of those 48,45 had compensated hypothyroidism and 3 had decompensated hypothyroidism, 25.1% and 1.7% of the total subjects, respectively. Compensated hypothyroidism was observed in 17 subjects aged ≤1O years and in 28 subjects aged> 10 years. All 3 decompensated hypothyroidism cases were> 10 years of age. No relationship was found between the occurrence of primary hypothyroidism and mean pre-tr811sfusion Hb levels (P=0.481, OR 1.30; 95% CI 0.63 to 2.68), elevated serum ferritin levels (P=0.74, OR 0.89; 95% CI 0.46 to 1.75), and compliance to iron chelation therapy (P=0.570, OR 0.76; 95% CI 035 to 1.65). Based on multivariate analysis, only age of <10 year-old (P=O.029, OR 0.469; 95% CI 0.23 to 0.93) was significantly associated Mth primary hypJthyroidism. Further analysis using receiver operator curve (ROC) technique found that age of 8.5 year-old was the cutoff value to predict the risk of hypothyroidism. Conclusion The prevalence of primary hypothyroidism in our study is high. The occurrence of hypothyroidism is associated with age.


Author(s):  
Samar M. Shehata ◽  
Mohamed I. Amin ◽  
El Sayed H. Zidan

Abstract Background Iron deposition distorts the local magnetic field exerting T2* signal decay. Biopsy, serum ferritin, echocardiography are not reliable to adjust iron chelation therapy. Quantified MRI signal decay can replace biopsy to diagnose iron burden, guide treatment, and follow up. The objective of this study is to evaluate the role of T2* in quantification of the liver and heart iron burden in thalassemia major patients. This cross-sectional study included 44 thalassemia patients who were referred to MRI unit, underwent T2* MRI. Results Twenty-one male (47.7%) and 23 female (52.3%) were included (age range 6–15 years, mean age 10.9 ± 2.9 years). Patients with excess hepatic iron show the following: 11/40 (27.5%) mild, (13/40) 32.5% moderate, and (14/40) 35% severe liver iron overload. High statistical significance regarding association between LIC and liver T2* (p = 0.000) encountered. Cardiac T2* values showed no relationship with age (p = 0.6). Conclusion T2* is a good method to quantify, monitor hepatic and myocardial iron burden, guiding chelation therapy and prevent iron-induced cardiac complications.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Vincenzo De Sanctis

More than five decades ago, thalassemia major (TM) was fatal in the first decade of life. This poor prognosis changed since the survival rates started to increase progressively thanks to the implementation of continuous and significant improvement of diagnostic and therapeutic methods, consisting mainly of an intensive transfusion program combined with chelation therapy and imaging methods. Regular red blood cell (RBC) transfusions eliminate the complications of anemia, compensatory bone marrow expansion, bone changes and splenomegaly, restore the physiological growth throughout childhood and extend survival. The most serious disadvantage of life-saving transfusions is the inexorable accumulation of iron within tissues. Iron is physiologically stored intracellularly in the form of ferritin, a protein whose synthesis is induced upon the influx of iron. When the storage capacity of ferritin is exceeded, pathological quantities of metabolically active iron are released intracellularly in the form of hemosiderin and free iron within an expanded labile pool. This metabolically active iron catalyzes the formation of free radicals, which damage membrane lipids and other macromolecules, leading to cell death and eventually organ failure. Other factors contributing to the variability of cellular iron overload are: a) the cell surface transferrin receptors and the capacity of the cells to deploy defence mechanisms against inorganic iron; b) individual susceptibility to iron toxic effect; c) the development of organ(s) damage secondary to persisting severe iron overload in the years preceding iron chelation therapy; and d) liver disorders, chronic hypoxia and associated endocrine complications. Multi-transfused thalassemia major (TM) patients frequently develop severe endocrine complications mainly due to iron overload, anemia, and chronic liver disease, which require prompt diagnosis, treatment and close follow-up by specialists.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4270-4270
Author(s):  
Antonios Kattamis ◽  
Konstantinos Stokidis ◽  
Theoni Petropoulou ◽  
Dimitra Kyriacopoulou ◽  
Polyxeni Delaporta ◽  
...  

Abstract Abstract 4270 Background: Recent advances in the treatment of iron overload in patients with transfusion- dependent thalassemia have dramatically changed iron related morbidity and mortality. Intensive chelation therapy by using combination therapy or monotherapy at high doses had led to total clearing of the iron in many patients. The best approach for chelation treatment in patients with low levels of iron overload is debatable. Patients and Methods This study included all the patients with thalassemia major with minimal liver iron overload, followed in our unit. More precisely, to be eligible for this observational study, the patients needed to have liver iron concentration (LIC) <1.5 mg Fe/gram dry weight tissue, defined by MRI, and to have at least a subsequent MRI evaluation after this time. The mean observation time, which was the time between the two MRIs, was 16.9±5.2 months. Results Fourty five patients (22 females, 30 non-splemectomized, 21 HCV seropositive, mean age: 31±5.6 years) have reached minimal levels of iron overload in any time point after 2004. Thirty one of them have been treated with combined therapy of desferrioxamine (DFO) and deferiprone (DFP) and 5, 6 and 3 with monotherapy of deferasirox (DFX), DFP and DFO, respectively. After reaching these levels, 42% of the patients changed therapy, with the most frequent change being from combined therapy to monotherapy (15 patients). Baseline ferritin levels at the time of the first MRI range from 43 to 4336 ng/ml (median 230 ng/ml) and they were not affected by spleen, gender or HCV status. Baseline LIC (mean 1.2 ± 1.7 mgFe/g.d.w.) correlated well with ferritin levels (Spearman's rho = 0.47, p<0.005), as did ferritin changes to LIC changes (Spearman's rho = 0.67, p<0.005). The results on the follow up evaluation, stratified according to the actual treatment, are shown in the table Deferiprone was less efficacious in controlling both LIC and ferritin levels compared to combination therapy (p=0.016 and 0.031, respectively). Fifteen out of 17 patients treated with DFP showed an increase in LIC, despite using the recommended dose. Six out of 9 patients treated with DFX, most at a low dose, showed an increase in LIC. There were no differences in changes in the cardiac parameters (LVEF, cardiac T2*) in between treatment groups. The efficiency of DFP and DFX, which represents the ratio of iron excreted to the theoretical maximum of iron that could be bound by the chelators, was calculated at 1.8±0.9 % and 15.2 ± 3.6 %, respectively. Conclusions Current iron chelation therapy regimens are able to render iron load-free many patients with thalassemia major. As iron accumulation from transfusions continues, a fine balance needs to be found in which neither worsening of iron overload nor toxicity from excessive dose of iron chelators will occur. This study showed that at low levels of iron overload both combination therapy and DFX can control iron accumulation, whether monotherapy with DFP may be insufficient to achieve iron balance in many patients. The dose of the chelators needs to be adjusted according to the needs and the clinical course of the patients, which can be predicted by the trend of the ferritin levels. Furthermore, it should be kept in mind that at low levels of iron overload, the iron chelators' efficiency may be lower than previously described. Disclosures: Kattamis: NOVARTIS ONCOLOGY: Honoraria, Research Funding, Speakers Bureau; APOPHARMA: Honoraria. Ladis:NOVARTIS ONCOLOGY: Honoraria, Research Funding; APOPHARMA: Honoraria, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1719-1719
Author(s):  
Youssef A Lama ◽  
Hanan Touma ◽  
Khawla AlKeba ◽  
Osama Maksoud

Abstract Background Thalassemia is the most prevalent autosomal abnormality in the population of Syria. In 2013, the total number of registered thalassemia patients is 8300. Disease prevalence is reinforced by the high rate of consanguineous marriages especially in the rural regions of this Middle Eastern and Mediterraneancountry. Regular blood transfusions and iron chelation therapy (ICT) have significantly improved survival and reduced morbidity of patients withβ thalassemia major (BTM). Although ICTs are provided free of charge by the government to all (BTM) patients, adequate monitoring of therapeutic outcomes is lacking, and cardiac complications still represent significant morbidity and remain the leading cause of mortality. Objective This study aimed at evaluating the prevalence of poor chelation in Syrian patients with BTM, and assessing the effectiveness of different iron chelation regimens provided by the National Thalassemia Program. Methods We conducted a single-centered study encompassing two phases; i) a retrospective chart review of serum ferritin levels of all female and male patients (≥ 3y) with (BTM) receiving iron chelation regimens (mono- or combination therapy) in 2009 and 2010; and ii) a 15 month prospective observational study to evaluate the effectiveness of desferrioxamine (DFO) monotherapy (at a dose of 40-50 mg/kg given over 8–10 h on 5-7 d/week), versus DFO (at the same dose used for DFO monotherapy) in combination with deferiprone (DFP) (at a dose of 75 mg/kg/day) [DFO+DFP] in patients received prior monotherapy with DFO but had poor response. Endpoints were defined as reducing iron stores in iron overloaded patients and improving cardiac function assessed by left ventricular ejection measurements using Doppler Echocardiogram. Statistical analysis of data sets was performed using Prism Graphpad, version 5. Results A total of 493 records of all patients registered at the National Thalassemia Centre in Homs were evaluated. 280 (56.8%) of these patients were diagnosed with BTM, and 245/280 (87.5%) were receiving iron chelation therapy. The average age was 11.35 ± 5.69 year-old (mean ± SD), age range [3-32 year], and male-to-female sex ratiowas 102:103. 39% of the patients were administered DFO, 30% and 10% received oral deferasirox (DFX) and deferiprone (DFP) respectively, whereas 21% received a combination of [DFO + DFP]. The average ferritin concentration of the study population was 3954.89 ± 1431.37 [range from 1362 to 8656] ug/l in 2009, and 4038.22 ± 1572.49 [range from 1173 to 8210] ug/l in 2010. Strikingly, 98% of patients had iron overload; [15% mild, 35% moderate and 48% severe] in 2009, and [12.3% mild, 42.5% moderate and 45.2% severe] in 2010. Patients on DFX had the lowest ferritin concentrations when compared with these of their peers on the DFO and [DFO + DFP] regimens (P=0.0001 and P=0.02 respectively). Patients of DFX also had the lowest percentage of sever iron overload (31%) in comparison with 58%, 51%, and 40% in patients on DOF, [DFO+DFP], and DFP respectively. In the prospective observational phase of our study, several comparative assessments were conducted. The combination of [DFO+DFP] reduced ferritin concentration by 14% from a mean baseline concentration of 4662.4 ±1266.17 to 3697.1 ±1547.9 (μg/l) after the study 15 month follow up period (P=0.0006), whereas DFO alone was ineffective. Cardiac function decreased by a percentage of (-4.74 ± 12.89) from 68.64%±6.97% to 60.98%±7.22% in patients on DFO (p= 0.0001) and from 67.39%±6.49% to 63.91%±8.51% in patients receiving combination therapy (p= 0.031). Mean decrease was greater in DFO regimen (-10.53 ± 11.89) than that seen in patients on combination therapy (-4.74 ± 12.89) (p= 0.035). Conclusions This study reveals aspects of the current status of ICT outcomes in Syria. Our results prove high prevalence of iron overload in patients with BTM despite their receiving ICTs free of charge. Patients are not achieving target serum ferritin thresholds despite chronic treatment with DFO for iron overload. This may suggest its poor clinical effectiveness within the real-world, and necessitates active measures to improve patients’ compliance. The underlying causes of these suboptimal therapeutic outcomes of all ICT regimens should be further investigated, and the cost-effectiveness of ICTs should be reconsidered by decision makers. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1517-1517
Author(s):  
Ersi Voskaridou ◽  
Eleni Plata ◽  
Panagiota Stefanitsi ◽  
Marousa Douskou ◽  
Dimitrios Christoulas ◽  
...  

Abstract Abstract 1517 Poster Board I-540 Iron overload was not thought to be an important issue in sickle cell disease (SCD) in the past because of the short life-span of SCD patients. However, the increase in longevity during the recent years has been associated with clinical evidence of iron overload in some SCD patients due to accumulation of transfusional iron, increased absorption associated with intensive erythropoiesis and iron deposition as a result of continuous hemolysis. Therefore, iron overload may play an important role in the severity of SCD and iron chelation has a definite indication in several SCD cases. Thalassemia intermedia (TI) encompasses a wide clinical spectrum of beta-thalassemia phenotypes. Iron overload is alsofrequently present in TI patients as a result of increased intestinal iron absorption secondary to chronic anemia and to sporadic blood transfusion therapy, which may be administered intermittently when hemoglobin (Hb) levels fall <7 g/dL. Thus, a variable rate of iron loading, reaching toxic levels in some patients, was seen in a series of intermittently transfused TI patients who need adequate chelation therapy. Deferasirox (Exjade®) is a once-daily orally administered iron chelator approved for the treatment of transfusional iron overload in patients with transfusion-dependent anemia. Here, we report on the efficacy and safety of deferasirox in iron-overloaded patients with SCD and TI. We evaluated 18 adult patients with SCD (8M/10F; mean age 41.3 ± 8.5 years) and 11 with TI (5M/6F; mean age 41.2 ± 6.5 years) who had serum ferritin levels >1000 ng/mL and who were sporadically transfused with <20 units of red blood cells before starting deferasirox treatment for up to 12 months. Twenty-four patients (15 with SCD and 9 with TI) and 5 (3 with SCD and 2 with TI) patients were initially treated with deferasirox at 10 and 20 mg/kg/day, respectively, based on the number of blood transfusions received before the initiation of treatment. After 3 months, dose adjustments (increases) were allowed in increments of 5 mg/kg/day every 3 months as required to reduce markers of iron overload. Total iron burden was monitored by measuring serum ferritin levels before and monthly after starting deferasirox, while liver iron concentration and cardiac iron burden were measured by magnetic resonance imaging (MRI) T2 and T2* parameters at baseline and 12 months after deferasirox treatment. Left ventricular ejection fraction (LVEF) by MRI, and 24-hour proteinurea (Prot 24h) before and after treatment, were also measured. Hb levels, serum creatinine, cystatin-C (a sensitive marker of renal impairment), alanine (ALT) and aspartate aminotransferase (AST) were measured before and every month during deferasirox treatment. Serum ferritin level was significantly reduced after 12 months of deferasirox treatment in both SCD (mean±SD: from 1993±997 ng/ml to 1106±1016 ng/ml, p<0.001) and TI patients (from 2030±1040 ng/ml to 1165±684 ng/ml, p=0.02). Similarly baseline liver T2 and T2* significantly increased following 12 months of therapy in SCD (from 21.1±5.7 ms to 27.4±8.0 ms, p=0.001 and from 4.1±3.8 ms to 6.0±3.4 ms, p=0.013, for T2 and T2* respectively) and TI patients (from 20.1±4.1 ms to 23.7±6.2 ms, p=0.01 and from 3.4±3.0 ms to 4.4±3.0 ms, p=0.02, for T2 and T2* respectively). Mean cardiac T2* and LVEF were normal at baseline and did not significantly change after 12 months of treatment in SCD and TI patients. There were also no significant changes in mean serum creatinine, Hb or Prot 24h levels after 12 months of deferasirox treatment, while mean ALT and AST levels significantly decreased over 12 months in both groups of patients (p<0.02 and p<0.04 for SCD and TI, respectively). In terms of cystatin-C, there was a significant increase after 12 months of treatment in SCD patients (from 0.97±0.32 mg/l to 1.12±0.4 mg/l, p<0.001) but not in TI patients, in whom the increase was of borderline significance (from 0.98±0.23 mg/l to 1.13±0.27 mg/l, p=0.094). These data indicate that, over 12 months, deferasirox significantly reduced liver iron burden and serum ferritin levels in these iron-overloaded patients with SCD and TI. The decreases in ALT and AST are suggestive of an improvement in liver function, while there must be some caution for renal impairment, mainly in SCD. This study indicates that deferasirox provides effective iron chelation therapy in these patients without any significant adverse effects. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4558-4558
Author(s):  
Lisette Del Corso ◽  
Elisa Molinari ◽  
Andrea Bellodi ◽  
Riccardo Ghio ◽  
Andrea Bacigalupo ◽  
...  

Abstract BACKGROUND: Iron overload from chronic transfusion therapy can be extremely toxic and most patients (pts) do not receive adequate iron chelation therapy (ICT) despite evidence of transfusional iron overload (IOL). Deferasirox (DFX) is the principal option currently available for ICT in the management of IOL due to transfusion dependent anemia, such as in MDS pts. The most common adverse events (AEs) are gastrointestinal disorders, skin rash, elevations in liver enzymes levels and non-progressive transient increases in serum creatinine also in MDS pts, most of whom are elderly with significant comorbidities and side effects of other concomitant therapies. In order to achieve effective ICT with minimal toxicity in individual pts, regular monitoring to assess IOL and adverse effects of DFX treatment is essential. METHODS: The safety and efficacy of DFX were examined in a retrospective multicenter observational study of transfusion-dependent (TD) MDS pts with International Prognostic Scoring System (IPSS) low-or Int-1-risk. We included all pts treated with DFX up to 12 months, divided into two groups; the first one (group A) not under a multidisciplinary assessment, including pts not adequately treated, in terms of dosing and discontinuation of ICT and the second one (group B) with pts under multidisciplinary control. The DFX starting dosing was 10 mg/kg/die in all pts. The aim of our retrospective analysis was to assess the effectiveness of ICT in relation of dosing and right management of AEs. RESULT: We evaluated 45 MDS pts (12F/33M); 27 belonging to the group A and 18 to group B. The age was 74.2±8.8 and 77.3±4.8 respectively. The ECOG 0-1 was 85,1% in group A and 88,9% in group B. The transfusion episodes prior starting DFX were22.1±12.1 and 24.5±35.4 in the first and in the second group, respectively. The serum ferritin level at baseline was respectively 1285.1±489.6 ng/mL and 1452.6±748.1 ng/mL. The mean serum ferritin level increased from 1285.1+489.6 ng/mL to 1412.1+842.8 ng/mL in group A while decreased from 1452.6+748.1 ng/mL to 1166.1+ 723.4 ng/mL in group B. The rate of inadequate therapy, in terms of dosing and/or discontinuation ICT, was 85% in group A compared to 60% in group B (p= 0.086).The rate of severe SAE observed in all pts was 10%.The most common AEs were diarrhea, nausea, upper abdominal pain, serum creatinine increase. The positive hematological response rate was observed in 15% of all pts. CONCLUSIONS: The study showed that group B obtained advantage in terms of efficacy and toxicity. The difference between the two groups derived from the ability to manage comorbidities, concomitant therapies and AEs, in particular the rise in serum creatinine, the most common cause DFX discontinuation or dosing reduction. In this setting, the most important specialist was the nephrologist. In our multidisciplinary group experts in management of ICT were hematologist, internist, immune-hematologist and nephrologist. We shared how we monitored kidney function and managed a possible nephrotoxicity (table.2), in order to ensure DFX efficacy. Positive hematological responses were observed, and a subset of pts achieved transfusion independence. The timing of future multidisciplinary evaluation is set on 24 and 36 months, time in which we expect the best response to DFX therapy. Table 1. Ferritin trend group A (n27) group B (n18) Ferritin N mean±SD Median (range) N mean±SD Median (range) Baseline 27 1285.1±489.6 1134 (388-2099) 18 1452.6±748.1 1515 (160-3018) 3 months 22 1451.5±720.5 1247.5 (529-2791) 13 1312.7±909.8 1064 (521-3859) 6 months 23 1850.5±1079.1 1419 (374-4185) 11 1168.4±648.4 1300 (160-2409) 12 months 17 1412.1±842.8 1372 (111-3127) 9 1166.1±723.4 930 (277-2536) Table 2. Management of renal changes during therapy with DFX Creatinine and urine examination:1) in two successive determinations prior to initiation of therapy, then every month 2) in pts with other risk factors for kidney disease, every week for 1 month after start of DFX or dose increase and, subsequently, every month Changes in creatinine:1) increased by 33% in two successive determinations: reduce DFX dose of 5 mg/kg 2) progressive increase of creatinine: interrupt DFX and then re-challenge it at a lower dose with gradual increase if the clinical benefits outweigh the risks Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Melody J. Cunningham ◽  
Eric A. Macklin ◽  
Ellis J. Neufeld ◽  
Alan R. Cohen ◽  

Abstract Treatment of patients with β-thalassemia major has improved dramatically during the past 40 years; however, the current clinical status of these patients remains poorly characterized. We performed a cross-sectional study of 342 patients in the Registry of the National Institutes of Health-sponsored Thalassemia Clinical Research Network. Evidence of hepatitis C exposure was present in 35% of tested patients, was associated with age, and had a rate of spontaneous viral clearance of 33%. Ferritin levels ranged from 147 to 11 010 ng/mL (median, 1696 ng/mL). Median hepatic iron content was 7.8 mg/g dry weight and 23% of patients had values of 15 mg/g dry weight or higher. No patients 15 years or younger and 5% of patients aged 16 to 24 years had heart disease requiring medication. Ten percent had cirrhosis on biopsy. Endocrinologic complications were common among adults. Seventy-four (22%) patients had recent implantable central venous access devices (CVADs) placed. Among 80 episodes of bacteremia in 38 patients, 90% were attributable to the CVAD. Among 330 patients who had received deferoxamine chelation therapy, 224 (68%) reported no complications. We conclude that hepatitis C, iron-related organ dysfunction, and complications of iron chelation therapy are strongly age-dependent in North American patients with β-thalassemia.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 664-672 ◽  
Author(s):  
Heather A. Leitch ◽  
Linda M. Vickars

AbstractThe myelodysplastic syndromes (MDS) are characterized by cytopenias and risk of transformation to acute myeloid leukemia (AML). Although new treatments are available, a mainstay in MDS remains supportive care, which aims to minimize the impact of cytopenias and transfusion of blood products. Red blood cell (RBC) transfusions place patients at risk of iron overload (IOL). In beta-thalassemia major (BTM), IOL from chronic RBC transfusions inevitably leads to organ dysfunction and death. With iron chelation therapy (ICT), survival in BTM improved from the second decade to near normal and correlated with ICT compliance. Effects of ICT in BTM include reversal of cardiac arrhythmias, improvement in left ventricular ejection fraction, arrest of hepatic fibrosis, and reduction of glucose intolerance.It is not clear whether these specific outcomes are applicable to MDS. Although retrospective, recent studies in MDS suggest an adverse effect of transfusion dependence and IOL on survival and AML transformation, and that lowering iron minimizes this impact. These data raise important points that warrant further study. ICT is potentially toxic and cumbersome, is costly, and in MDS patients should be initiated only after weighing potential risks against benefits until further data are available to better justify its use. Since most MDS patients eventually require RBC transfusions, the public health implications both of transfusion dependence and ICT in MDS are considerable. This paper summarizes the impact of cytopenias in MDS and treatment approaches to minimize their impact, with a focus on RBC transfusions and their complications, particularly with respect to iron overload.


Sign in / Sign up

Export Citation Format

Share Document